• Title/Summary/Keyword: leaf water status

Search Result 46, Processing Time 0.023 seconds

Estimation of Water Content in Leaf Litter of Three Quercus Species by Reflectance Water Index (Reflectance water index를 이용한 참나무속 3종 낙엽의 함수량 추정)

  • Suh, Kyehong
    • Journal of Environmental Science International
    • /
    • v.27 no.4
    • /
    • pp.275-279
    • /
    • 2018
  • Water status of intact plants has been optically estimated by measuring reflectance at the wavelengths 1,450 nm and 1,900 nm based on their signal strengths. Although another water band at 970 nm is considered to have very small signals, the band apparently lies within the detection range of inexpensive spectrometer and plain charge-coupled device (CCD) camera used in wild fire studies. However measurement of the reflectance at 970 nm has been rarely applied to estimate the water status of dead plant materials such as fallen branch, twig, and leaf. To test the possibility of applying water reflectance at 970 nm to estimate the water content (WC) in leaf litter, the reflectance in various WC values were measured in the leaf litter of three Quercus species (Q aliena, Q aliena, Q mongolica, and Quercus variabilis). The results showed that the WC in the leaf litter can be determined by reflectance water index (WI) in the three Quercus species ($WC=1,450{\times}WI-1,378.8$, r=0.865). However, there was no interaction effect in the relationship between WI and WC among the litter of the three Quercus species.

Water Status of Several Evergreen Plants during Overwintering (수종 상록식물의 월동 중 수분상태)

  • Kim, Joon-Ho;Chang-Seok Lee
    • The Korean Journal of Ecology
    • /
    • v.9 no.4
    • /
    • pp.201-208
    • /
    • 1986
  • The water status of the leaves of several evergreen plants was investigated in order to discuss the geopgraphical distribution of them. Relastionship between relative water content and water potential of the leaves showed linear decrease for evergreen conifers but exponential decrease for Korean box tree (Buxus microphylla var. koreana). On the basis of the leaf water potential, the water status of the conifers during wintering was distinctly divided into three periods; hardening, cold resistance and dehardening, but lacking in those periods for the Korean box tree, where the status continously decreased. In the cold resistance the leaf water potentials were -23 bar for both spruce (Picea jezoensis) and yew (Taxus cuspidata). From these results and threshold temperature at beginning of hardening, distribution of the conifers was explained that in order of the red pine, the Korean white pine, the yew and the spruce the distribution could be extended at higher altitudes and in more northward areas, whereas the distribution of the Korean box tree was restricted to the lowland of temperate zone.

  • PDF

Comparative Water Relations of Two Vitis vinifera Cultivars, Riesling and Chardonnay

  • Park, Yong-Mok
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.223-226
    • /
    • 2001
  • The leaf water relations and photosynthetic rate during acute soil drying were compared in potgrown grapevine cultivars, Vitis vinifera cv. Chardonnay and V. vinifera cv. Riesling. Leaf water potential in Riesling decreased significantly from day 2 after water had been withheld, while in Chardonnay leaf water potential for the water-stressed plants was almost identical with that in well watered plants during the first 4 days. Higher stomatal conductance and photosynthetic rate in Chardonnay than Riesling were observed until day 3 after withholding water. Photosynthetic rate in water-stressed Chardonnay was not different from that in control plants until day 3 after withholding water, while that in water-stressed Riesling was reduced markedly from day 2. In Riesling, osmotic potential at turgor loss point was not changed irrespective of watering conditions. However, in Chardonnay osmotic potential at turgor loss point decreased more in the water stressed conditions than in well watered conditions. The osmotic adjustment in Chardonnay under water stress conditions must contribute to the maintenance of higher stomatal conductance and photosynthetic rate than those in Riesling for a significant period of the drying process. Though difference in stomatal conductance between the two cultivars was shown in the process of soil drying, stomatal conductance of both cultivars responded to vapor pressure difference between leaf and ambient air, rather than soil water status and leaf water potential.

  • PDF

Genotypic Variation in Leaf Water Status of Soybean

  • Jin, Yong-Moon;Lee, Hong-Suk;Lee, Suk-Ha;Kwon, Yong-Woong;Im, Jeong-Nam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.55-58
    • /
    • 1999
  • Plant water status during growth is directly and indirectly associated with seed yield. The objective of the present study was to determine the genotypic differences in leaf water characteristics at an early growth stage of soybean [Glycine max (L.) Merrill] plants through the pressure-bomb technique. Measurements of water potential as well as relative water content (RWC) were made at the third leaf from the fully-expanded top leaf of eight different soybean genotypes grown for 31 to 35 days after field emergence. On the basis of the modified exponential model, pressure-volume (PV) curves were fitted well ($R^2$=0.92** to 0.99** for the curvi-linear region and R=0.67** to 0.96** for the linear region), indicating that a segmented model using PROC NLIN of SAS could be used effectively to estimate the leaf water characteristics. The regression analysis for the pressure-volume (PV) curve revealed genotypic variation in the solute potential at saturation (Ψ$_{s,sat}$ :-10.7 to -14.8 bar), solute potential at incipient plasmolysis (Ψ$_{s,ip}$ : -14.3 to -18.3 bar), RWC at incipient plasmolysis (RW $C_{ip}$ : 83.3 to 91.7%), high integrated turgor pressure from saturation to plasmolysis ( $_1$$^{b}$ : 0.39 to 0.81), and maximum volumetric modulus of elasticity ($\varepsilon$$_{max}$ : 150 to 445 bar).).

  • PDF

Sap Temperature Distribution of the Xylem and Leaf Water Status of Apple Trees in Relation to Soil Oxygen Diffusion Rates

  • Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.170-175
    • /
    • 2000
  • A pot-lysimeter experiment was conducted with 3-year-old 'Tsugaru' apple (Malus domestica Borkh) trees to examine the changes in oxygen diffusion rate (ODR) with lateral flow velocity of water through soil. The influence of lateral water flow velocity on water relations and elemental content in leaf, and sap temperature distribution patterns of the xylem of trees were also determined. Trees were grown under four soil water regimes: (1) fast laterally flowing (FWT, $2.50{\times}10^{-4}cm\;s^{-1}$), (2) slow laterally flowing (SWT, $0.25{\times}10^{-4}cm\;s^{-1}$), and (3) stagnant water table (WLT) at 60-cm, and (4) drip-irrigation at -40 kPa of soil matric potential as a control. The rate of $O_2$ diffusion converged near $2{\times}10^{-3}g\;m^{-2}\;min^{-1}$ for FWT and control soils, but decreased below $1{\times}10^{-3}g\;m^{-2}\;min^{-1}$ 40 days after treatment (DAT) for WLT soils. For SWT soils, however, the ODR at 15 cm below the soil surface was similar to that of control, but at 45 cm below the soil surface, ODR was similar to that of the WLT treatment. Leaf water potential of FWT and SWT plants was similar to that of control plants, but the values for SWT plants declined by 98 DAT. Leaf water potential of WLT plants decreased from -1.86 MPa (9 DAT) to -2.41 MPa (59 DAT) and finally down to -2.70 MPa. The sap temperature measured at 1100-hr was lowest at top and highest at bottom for FWT and control plants, but this pattern of SWT and WLT plants was disturbed from 29 DAT. However, for SWT plants, such thermal disturbance of sap temperature disappeared from 63 DAT.

  • PDF

The Effects of Water Status on the Growth in Nicotiana tabacum L. (var. Samsun). (연초의 생육에 미치는 수분의 영향)

  • Kim, Nam-Won;Yoon, Kyong-Eun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.4 no.2
    • /
    • pp.3-10
    • /
    • 1982
  • This experiment was conducted to study the effect of soil water potenial on the growth and internal changes of stressed plants. The experimental imposition of soil water potential ( $\Psi$soil) were -0.1 to -0.2, -0.2 to -0.5, -0.5 to -3.0, -3.0 to -10.0 bar respectively. During water stress all growth rates were depressed, and the most sensitive period to water stress was found to be 10 to 25 days after transplanting. The water potential of leaf was declined rapidly within 12 hours after with holding of water. Nitrate reductase activity was decreased progressively as water deficit was built up in tobacco leaves, but the activity of alpha- amylase and super contents were increased. There were differences in peroxidase isozyme patterns between tile control and water stressed plant. New isozymes started to appear as tobacco leaf water potential decreased.

  • PDF

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF

Physiological Evaluation of Transgenic Rice Developed for Drought Tolerance

  • Ghimiren Sita Ram;Park Sang-Kyu;Kang Dong-Jin;Lee In-Jung;Shin Dong-Hyun;Kim Sung-Uk;Kim Kil-Ung
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2006
  • Evaluation of physiological performance of trehalose-producing transgenic rice line was conducted to investigate drought tolerance at early growth stage. Under artificially induced drought condition of 8% polyethylene glycol 6000, this transgenic rice line had leaf photosynthetic rate of 11.08 uml CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8.38 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -1.12 MPa after 96 hours of treatment. Nakdongbyeo, the parent of this tyansgenic rice line, had photosynthetic rate of 15.42 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8,04 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -0.88 MPa. The other variety used in this experiment for comparison, IR 72, showed higher values than both tyansgenic rice line and variety Nakdonbyeo on all three parameters; leaf photosynthetic rate of 20.61 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 12.88 mmol $H_2O$ $m^{-2}s^{-1}$, and leaf water potential of -0.82 MPa. So this transgenic rice line did not show superior performance in leaf transpiration rate, leaf photosynthetic rate and leaf water potential compared to variety Nakdongbyeo. This result along with visual observation on leaf rolling and drying during the experimental period indicated poor physiological performance of this transgenic rice line. Further studies on metabolic status of stress-induced trehalose, along with study on physiological response of this transgenic rice line during drought stress would shed more light on overall physiological performance of this transgenic rice line.

Evaluation of Thermal and Water Stress on Vegetation from Satellite Imagery

  • Viau, Alain A.;Jang, Jae-Dong;Anctil, Francois
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.165-167
    • /
    • 2003
  • To evaluate the thermal and water stress of vegetation canopy in Southern Qu$\'{e}$bec, leaf water status was evaluated from vegetation indices derived from SPOT VEGETATION images and surface temperature from NOAA AVHRR images. This study was conducted by investigating vegetation conditions for two different periods, from June to August, 1999 and 2000. The vegetation indices were integrated for the evaluating vegetation conditions as a new index, normalized moisture index (NMI). A trapezoid was defined by the NMI and surface temperature, and the thermal and water status of the vegetation canopy was determined according to separate small sections within the trapezoid.

  • PDF

Effect of Simulated Acid Rain on Water Status of Pinus densiflora and P. koraiensis (인공 산성비가 소나무와 잣나무 잎의 수분상태에 미치는 영향)

    • Korean Journal of Plant Resources
    • /
    • v.12 no.1
    • /
    • pp.10-19
    • /
    • 1999
  • The water status of Pinus densiflora and P. koraiensis was observed after the treatment of simulated acid rain for every month August 1997 to March 1998. Both of the species showed increase of dry weight, water saturation deficit and epidermis transpiration after treatment of simulated acid rain (pH 3.5) for first three months. On the contrary, water content was decreased in both the species after three month of simulated acid rain treatment. The effect of simulated acid rain, however, became weaker after that and no big difference was observed after seven month of treatment. Water potential of the leaf of both species became lower than that of the control(pH 5.6) after seven month treatment of simulated acid rain. The cuticle layers of the epidermis and florins ring were damaged seriously and the size of the gap between stomata became bigger after the treatment of simulated acid rain.

  • PDF