• Title/Summary/Keyword: leaf rolling

Search Result 36, Processing Time 0.028 seconds

Optimized Conditions for Making Tea from Camellia(Camellia japonica) Leaf and Flower and Sensory Evaluation

  • Kim, Ju-Hee;Im, Wha-Chun;Park, Min-Hee-;Lee, Jun-Ho;Lee, Sook-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.34-35
    • /
    • 2003
  • Before making of tea, the number of leaf, plant height and node length in young shoot were 5.2, 14.9cm and 1,9cm respectively. These contents caused problems in leaf rolling and uniformity. No significant difference in quality and comoposition of roasted and steamed were observed, external shape and internal quality, however, were good from 1st to 3rd leaf. Chemical nutrition consists of leaf position, Total nitrogen content of terminal leaf was 4.88%, total free amino acid 21.12%, and caffein 3%. Vitamin C content was increased with increasing of leaf age. Making of roasted tea was required long time because camellia leaf was very hard and smoothly. Products had lower water color, perfume and taste. Internal quality of steamed tea was good in water color and taste. The contents of total nitrogen, total free amino acid, catechin, caffeine and vitamin C were 4.24%, 1.01, 17.7%, 2.6% and 75.7mg/ml.(중략)

  • PDF

Effect of Water Stress at Different Growth Stages on the Growth and Yield of the Transplanted Rice Plants (벼의 생육기별 수분결핍장애가 생육 및 수량에 미치는 영향)

  • 남상용;권용웅;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.31-41
    • /
    • 1986
  • Knowledge of the degree of yield reduction due to water stress at different crop growth stages in rice production is important for rational scheduling of irrigation during periods of insufficient water supply. Previous studies to determine the degree of yield reduction duo to water stress suffered from interruptions by rain during experiment. Also the findings did rot relate the degree of water stress to the soil water potential and water deficit status of rice plants. In this study, two years experiments were conducted using the high yielding rice varieties, an Indica x Japonica (Nampoong) and a Japonica variety(Choochung). These were grown in 1/200$^{\circ}$ plastic pots placed under a rainfall autosensing, sliding clear plastic roof facility to control rainfall interruptions. The results obtained were as follows. 1.The two varieties differed in the growth stage most sensitive to water stress as well as the degree of yield reductions. When rice plants were stressed to the leaf rolling score 4 and soil water potential of about - 20 bar at major crop growth stages which included heading, booting, non-effective tillering, panicle initiation and early tillering stages, the yield reductions in the Indica x Japonica variety were 58%, 34%, 27%, 22%, and 21%, respectively, whereas in the Japonica vairety they were 23%, 36%, 1%, 13% and 22%, respectively. This result show that the recommended drainage during non-effective tillering is valid only for the Japonica variety. Sufficient irrigation at booting, heading and early tillering stages are necessary for both varieties. 2.The two varieties showed visible wilting symptoms when the soil water potential dropped to about - 3.0 bar. The Japonica variety showed more leaf rolling than the Indica X Japonica. However, it had a higher retention of leaf water content and greater stomatal diffusive resistance. When the soil water potential dropped, the Japonica variety showed leaf rolling score (LRS) 1 at 0 soil-5. 0 bar and LRS 2 at 0 soil -6.0 bar while the Indica X Japonica showed LRS 1 at 0 soil - 5.5 bar and LRS 2at 0 Soil - 9.0 bar. The stomatal diffusive resistance was maximum at the second top leaf blade in both varieties at intermediate water stress of 0 soil - 4.5 bar. 3.The number of days that was required for the soil water potential to drop to-3. 0 bar and to - 20.0 bar after drainage of irrigation water from the 20cm deep silty clay loam soil in the pots were 6 and 13 days, respectively for booting stage, and 7 and 11 days, respectively for heading stage, 9 and 12 days, respectively for panicle initiation stage, and 12 and 19 days, respectively for early tillering stage. 4.Water stress during the early tillering stage recorded the longest delay in beading time, the largest reduction in panicle numbers and a substantial yield decrease of 20%. This calls for better water management to ensure the availability of water at this stage, particularly during drought periods. In addition, a reexamination of the conventional inter-drainage practice during the non-effective tillering stage is necessary for the high yielding Indica X Japonica varieties.

  • PDF

Anti-allergic Effects of Castanea crenata Leaf Tea (밤나무 잎차(茶)의 항알레르기 효과)

  • Choi, Ok-Beom;Kim, Kyung-Man;Yoo, Gyurng-Soo;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.468-471
    • /
    • 1998
  • Regarding the characterstics of allergic diseases, preventive and continuous treatment is desirable, and tea would be the one of the best functional food formula for it. Here we report the development of tea processing method for the leaves of Castnaea crenata. Two forms of Castnaea crenata leaf tea were prepared, non-fermented steaming tea and semi-fermented rolling tea. Anti-allergic actions of Castanea crenata leaf tea were asessed by testing their effects on the degranulation of mast cells. For this, hexosaminidase release (degranulation marker) from RBL-2H3 cells (mast cell line) was used. At the concentration of $300\;{\mu}g/mL$ of the water extract, the degranulation of RBL-2H3 cells were inhibited 50.4% and 35.4% by non-fermented steaming tea and semi-fermented rolling tea, respectively. These results suggest that the tea processing method we developed could provide a valuable resource for the treatment of allergic diseases.

  • PDF

Symptom of Leaf Injury and Varietal Difference to Ozone in Rice and Soybean Plant (벼와 콩의 오존 피해증상과 품종간 차이)

  • Lee, Jong-Ta;Sohn, Jae-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.154-159
    • /
    • 2000
  • This study was carried out to elucidate the symptom of leaf injury to ozone and to determine varietal difference to ozone injury in rice and soybean plant. Ozone was produced by electrostatic discharge in oxygen and was monitored by UV absorption ozone analyzer. The rice leaves were spotted red and rolling leaf edge, discolored to reddish brown or yellowish white in response to ozone, and the leaves that were severely stressed were withered from the tip of leaf. The soybean ones were also discolored to lemon yellow, yellow or dark brown. The leaf injury in both rice and soybean was clearly appeared at the reverse side of leaf and in lower leaves. Milyang 23 and Nonganbyeo among rice cultivars tested were resistant to ozone, but Chucheongbyeo was resistant to it. The ratio of leaf injury was increased and chlorophyll content was decreased as the extension of ozone exposure from 2 to 8 hours in rice. Keunolkong and Danyeopkong among soybean cultivars tested showed resistant reaction to ozone, but Kwangankong and Muhankong were susceptible to it. It was observed that the soybean plants grown for 45 days after seeding were severely damaged by ozone than those of other growth stages.

  • PDF

The Characteristics of Friction and Wear for Automative Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • Oh Se-Doo;Ahn Jong-Chan;Park Soon-Cheol;Jung Won-Wook;Bae Dong-ho;Lee Young-Ze
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.118-126
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9(leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X-ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035m/s(50rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

  • PDF

Multi-Spectral Reflectance of Warm-Season Turfgrasses as Influenced by Deficit Irrigation (난지형 잔디의 가뭄 스트레스 상태로 인한 멀티스팩트럴 반사광 연구)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Remote sensing using multispectral radiometry may be a useful tool to detect drought stress in turf. The objective of this research was to investigate the correlation between drought stress and multispectral reflectance (MSR) from the turf canopy. St. Augustinegrass (Stenotaphrum secundatum[Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore paspalum Paspalum vaginatum Swartz.), 'Empire' zoysiagrass (Zoysia japonica Steud.), and 'Pensacola' bahiagrass (Paspalum notatumFlugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at 100%, 80%, 60%, or 40% of evapotranspiration (ET). Weekly evaluations included: a) shoot quality, leaf rolling, leaf firing b) soil moisture, chlorophyll content index; c) photosynthesis and d) multispectral reflectance. All the measurements were correlated with MSR data. Drought stress affected the infrared spectral region more than the visible spectral region. Reflectance sensitivity to water content of leaves was higher in the infrared spectral region than in the visible spectral region. Grasses irrigated at 100% and 80% of ET had no differences in normalized difference vegetation indices (NDVI), leaf area index (LAI), and stress indices. Grasses irrigated at 60% and 40% of ET had differences in NDVI, LAI, and stress indices. All measured wavelengths except 710nm were highly correlated (P < 0.0001) with turf visual quality, leaf firing, leaf rolling, soil moisture, chlorophyll content index, and photosynthesis. MSR could detect drought stress from the turf canopy.

Physiological Evaluation of Transgenic Rice Developed for Drought Tolerance

  • Ghimiren Sita Ram;Park Sang-Kyu;Kang Dong-Jin;Lee In-Jung;Shin Dong-Hyun;Kim Sung-Uk;Kim Kil-Ung
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2006
  • Evaluation of physiological performance of trehalose-producing transgenic rice line was conducted to investigate drought tolerance at early growth stage. Under artificially induced drought condition of 8% polyethylene glycol 6000, this transgenic rice line had leaf photosynthetic rate of 11.08 uml CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8.38 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -1.12 MPa after 96 hours of treatment. Nakdongbyeo, the parent of this tyansgenic rice line, had photosynthetic rate of 15.42 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8,04 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -0.88 MPa. The other variety used in this experiment for comparison, IR 72, showed higher values than both tyansgenic rice line and variety Nakdonbyeo on all three parameters; leaf photosynthetic rate of 20.61 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 12.88 mmol $H_2O$ $m^{-2}s^{-1}$, and leaf water potential of -0.82 MPa. So this transgenic rice line did not show superior performance in leaf transpiration rate, leaf photosynthetic rate and leaf water potential compared to variety Nakdongbyeo. This result along with visual observation on leaf rolling and drying during the experimental period indicated poor physiological performance of this transgenic rice line. Further studies on metabolic status of stress-induced trehalose, along with study on physiological response of this transgenic rice line during drought stress would shed more light on overall physiological performance of this transgenic rice line.

Food Product Development and Quality Characteristics of Ligularia fischeri for Food Resources (곰취의 식품재료화를 위한 품질특성 및 가공제품에 대한 연구)

  • Cho Sun-Duk;Kim Gun-Hee
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • Ligularia fischeri is widely grown in Korea and is containing medicinal components such as chamomile, jacobine, and ameleme etc.. Its juices from the leaf are well known for anticancer effect. This study was conducted to make Ligularia fischeri as functional food resources as food produce. To examine quality characteristics of Ligularia fischeri - such as color, texture, fiber, minerals, tannin, crude proteins, crude lipids and sensory quality - were determined using physicochemical methods. The content of dietary fibers were 0.56 g in each 100 g of freeze dried Ligularia fischeri. One of the mineral contents, iron showed the highest value. The contents of tannin were 33.3 ppm in fresh Ligularia fischeri. As results of food products having Ligularia fischeri, the content of crude protein were about $9.35\%$ and $10.37\%$ in rolling snack and garlic bread respectively. The content of crude lipid were about $28.27\%$ and $23.39\%$ in rolling snack and garlic bread, respectively. In sensory evaluation, garlic bread appeared better preference than rolling snack, and older age group showed a better acceptability.

Preparation of Barley Leaf Powder Tea and Its Quality Characteristics (보리잎 분말차의 제조와 그 품질특성)

  • Kim, Dong-Chung;Kim, Dong-Won;Lee, Sung-Dong;In, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.734-737
    • /
    • 2006
  • This study was carried out to establish the manufacturing process of barley leaf powder tea. The optimal manufacturing process among many trials was determined with sensory evaluation. Finally established process and operation conditions were as follows: pretreatment (cutting and washing), steaming ($100^{\circ}C$, 30 sec), primary drying and roasting ($130^{\circ}C$, 40 min), rolling (RT, 25 min), middle drying and roasting ($60^{\circ}C$, 30 min), final drying and roasting ($55^{\circ}C$, 25 min), drying ($60^{\circ}C$, 20 min), roasting ($85^{\circ}C$, 20 min), and powdering (120 mesh). The barley leaf powder tea produced by this process mainly consisted of dietary fiber (33.8%), amino acids (12.9%), minerals (4.7%) and ${\beta}-carotene$ (6.9 mg%).

Epidermal Features of the Nelumbo nucifera Tissues and Lotus Effect (연꽃식물 조직의 표피 특성과 연잎효과)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • The cell surface sculpture of the plant epidermis has received great interest recently. It has also been an active area of research, as the biological microstructures of the surface, such as papillae and waxes, exhibit several unique properties, including self-cleaning character; namely the "Lotus effect" first described in the leaves of the lotus, Nelumbo nucifera. The Lotus effect is the phenomenon in which the super-hydrophobic and water-repellent nature of lotus leaves allow water drops to run off easily on the surface in a rolling and sliding motion thereby facilitating the removal of dirt particles. It is well-known that surface roughness on the micro- and nanoscale is a primary characteristic allowing for the Lotus effect. This effect is common among plants and is of great technological importance, since it can be applied industrially in numerous fields. In the present study, Nelumbo nucifera leaf and stem epidermal surfaces have been examined with a focus on the features of papillae and wax crystalloids. Both young and mature Nelumbo nucifera leaf epidermis demonstrated the Lotus effect on their entire epidermal surface. The central area of the upper epidermis, in particular, formed extremely papillose surfaces, with an additional wax layer, enabling greater water repellency. Despite the presence of wax crystalloids, epidermal surfaces of the lower leaf and stem lacking papillae, were much more easily wetted.