• Title/Summary/Keyword: leaf elongation

Search Result 188, Processing Time 0.034 seconds

Characterization of Biomass Production and Seedling Establishment of Direct-Seeded Nogyangbyeo, a Whole Crop Rice Variety for Animal Feed

  • Yang, Woon-Ho;Choi, Kyung-Jin;Kwak, Kang-Su;Park, Tae-Shik;Oh, Min-Hyuk;Shin, Jin-Chul;Kim, Jong-Geun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.3
    • /
    • pp.249-258
    • /
    • 2007
  • Experiments were conducted with aims to (1) estimate the biomass yield potential, (2) characterize the biomass and digestible dry matter production, and (3) reveal the characteristic seedling establishment of a whole crop rice variety, Nogyangbyeo, in dry- and wet-seeded rice. Maximum aboveground total biomass of Nogyangbyeo was 18 t $ha^{-1}$ in dry-seeded rice and 20 t $ha^{-1}$ in wet-seeded rice. Biomass yield potential of Nogyangbyeo was lower than that of Dasanbyeo. Comparatively, Nogyangbyeo was straw-dependent and Dasanbyeo was grain-dependent for biomass accumulation. Percentage of digestible dry matter (DDM) was higher in panicles than straw. Digestible dry matter yield was determined mainly by biomass yield rather than DDM percentage. Number of seedling establishment in Nogyangbyeo was $73m^{-2}$ in dry-seeded rice and $109m^{-2}$ in wet-seeded rice. Poor seedling establishment of dry-seeded Nogyangbyeo in the field condition was the result of low seed germination under low temperature and poor seedling emergence by deep sowing. Low seedling emergence rate of Nogyangbyeo was attributed mainly to slow elongation growth by slow leaf development and partly to mesocotyl and 1st internode lengths, not to genetically defined leaf length. The slow elongation growth of Nogyangbyeo was the same even in the high daily mean temperature of $24^{\circ}C$. Results suggest DDM yield in rice can be improved simply by increasing biomass and whole crop rice varieties should be adaptable to direct-seeding.

Secondary Damage and Adult Emergence of Pine Bark Beetle (Blastophagus piniperda) in Tended Forests (숲 가꾸기 임지의 소나무좀 발생과 후식 피해)

  • Goo Kwan-Hyo;Lee Jeong-Hwan;Kim Jong-Kab
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.258-264
    • /
    • 2005
  • The objectives of this study were to study 1) emergence of pine bark beetles, 2) larval density in residual timber on Idlest land by each felling season, and 3) the secondary damage rates in the tended forest. Pine forest land which had undergone tending had a higher secondary damage ratio $(59.6\%)$ by pine bark beetles than forest land that was not tended $(2.8\%)$. The number of escape holes averaged 11.3 0.31 per $250 cm^2$ on the bark of leaf trees in the tended forest. The number of escape holes was higher in the Jinju site than in the Hamyang site. The larval habitat density of pine bark beetles as compared with each felling period was higher after mid-October than in forests tended early in October. Thus, forests should be tended before early October in order to prevent secondary damage from pine bark beetles. Secondary damage in the tended forest was higher in the upper part $(75.5\%)$ of the tree crown than in the lower part $(49.2\%)$. The damage was higher in terminal shoots $(80\%)$ than in lateral shoots $(48\%)$. Therefore, secondary damage by pine bark beetles can cause deterioration of the elongation growth of the forest trees. In conclusion, if by-products of tended pine forest forests are neglected, they will be utilized as a propagation site for pine bark beetles (Blastophagus piniperda L). The propagated adults will damage the tender shoots of the leaf trees and thus seriously limittheir elongation.

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.

Growth Stages of Maize (Zea mays, L.) (옥수수의 형태적 변화와 생장 발육 단계)

  • 박병훈;양종성;강정훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.2
    • /
    • pp.185-191
    • /
    • 1981
  • The purpose of this paper is to define and describe a series of growth stages for maize. cv. MTC-l (early) and Suweon No. 19 (late) that are easily identifiable by both professional agronomists and farmers. Plants were grown at a density of 60cm row with plant spacing of 15cm at six different seeding times in 1980. Leaf development indices with ten grades (LDI) were identified and defined in accordance with the development of a leaf blade. Leaf appearance rate (LAR) was ca. 3 days and it was not influenced by the variety or seeding time. The elongation of the first internode above the ground level began in a month after emergence and it corresponded to the 8th or 9th leaf stage. Internodes elongated in regular sequence of node position. The morphological change of silks related closely with the development of kernel. The duration of generative development was not influenced by varieties and seeding time but that of vegetative growth was influenced. A new scheme for the maize which was made by the developed leaves, visible nodes above ground level, morphological change of silks and development of kernel was proposed.

  • PDF

Effect of Photoperiod, Temperature and True-leaf Stage in Bolting Rate of Chicory (Cichorium intybus L. var. sativus)

  • Lim, Jung-Dae;Seo, Jeong-Sik;Lee, Hyeon-Yong;Kim, Jong-Dai;Lee, Jin-Ha;Yu, Chang-Yeon
    • Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • Root chicory (Cichorium intybus L. var. sativus) is potential alternative medicinal and sugar crop which accumulates a high amount of linear polyfructan, inulin in its roots. A problem in root production is that over-wintered stock plants often flower. Once the plant becomes reproductive, stem elongation and root growth slows and floral buds arise from every node, rendering the plants useless for propagation. The objectives of this research was to examine the effectiveness of manipulating environmental factors containing photoperiod, temperature and number of leaf states. The experiment was performed in growth chamber to create two photoperiods (8 h, and 16 h) with three temperature regimes (5$^{\circ}C$/3$^{\circ}C$, 1$0^{\circ}C$/8$^{\circ}C$ and 15$^{\circ}C$/13$^{\circ}C$ day/night temperature) for a total of six treatments on three type of true-leaf stage of plant. Data of bolting rate, shoot and root length, shoot and fresh weight was invetigated in each treatments. This is the first report on changes in bolting rate and shoots and roots production during a whole growing season and differences in the effect of cold and photoperiod treatment depending on the true-leaf stage of plant.

  • PDF

Longitudinal Root Anatomy, Cell Dynamics, and Physiological Cell Responses in Root Growth Zones of Two Tall Fescue Genotypes at Two Nitrogen Levels (톨페스큐 뿌리생장부위의 종적해부구조, 세포역학 및 생리적 반응에 대한 질소효과)

  • Beom Heon, Song;Curtis J, Nelson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.285-296
    • /
    • 1995
  • Anatomical studies of sink tissues are required for better understanding the biological plant growth system and energy metabolism. Kinematics of root growth zones of two genotypes of tall fescue (Festuca arundinacea Schreb.) receiving 50 or 200 ppm N were determined. Longitudinal anatomy and cell dynamics of root growth zones were studied and calculated. The root growth zone is organized similarly to the leaf growth zone which has cell division, elongation, and maturation zones, but the root growth zone is only about 3.0 mm long compared to 25 to 30 mm for the leaf growth zone. The root cap extends about 0.4 to 0.5 mm from the apical initial, while the cell elongation zone for both cortical and metaxylem cells extends about 3.3 mm from the apical initial for both genotypes and N levels. Root cap cells elongate from an initial length of about 5$\mu{m}$ long to a final length of about 40$\mu{m}$ before being sloughed. Initial lengths of cortical and metaxylem cells were about 8.5 $\mu{m}$ and 13.0 $\mu{m}$, respectively. Elongation of cortex and metaxylem cell showed sigmoidal curves with final lengths of about 120 $\mu{m}$ for cortex cells and 650 $\mu{m}$ for metaxylem cells. Initial size and final size for both types were not affected by N level, but cell fluxes and cell elongation rates of cortical and metaxylem cells were about double in low N. Cell production rates were about 5 to 6 times higher in cortical cells than in metaxylem cells. Differences in N caused a larger change in cell production rate, duration of cell elongation, and relative cell elongation rate than did the genotypes. These data indicate that N application affects root growth longitudinally by changing cell production rate and elongation rate.

  • PDF

Effects of Gibberellin and Atonic Acid on Growth and Fiber Yield of Ramie Plant (식물생장조절자의 처리가 모시풀의 생육 및 섬유수량에 미치는 영향)

  • 정동희;김상곤;권병선;황종진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.213-218
    • /
    • 1993
  • An experiment was carried out to investigate the effects of plant growth regulators on the growth and fiber yield of ramie. Gibberellin (GA) and Atonic acid were applied at the various levels of application dates, application frequencies and concentration. Stem growth of ramie increased greatly by applying GA on the meristem of shoot apex. Among three treatments of application frequencies of GA, that is, one time application at the stage of stem length with 50cm, twice applications at the stem length of 50cm and 100cm, and three times applications at stem length of 50cm, 100cm and 150cm, stem growth increased more as application frequency increased. GA application is more effective on stem growth at the later stage of growth than the earlier growth stage. GA treatment of 100 to 300 ppm is more effective on stem elongation than 50 ppm, which was due on the elongation of internodes without increase in number of nodes. One time application of GA enhanced leaf growth more or less regardless of concentration, but GA was applied more frequently, leaf growth was inhibited more at higher concentration. Fiber yield was the highest at the treatment of three times application of GA with 100 ppm. This treatment also showed the highest percentage of fiber with 5.3%, which is much higher value compared with that of control treatment with 4.6%. Atonic acid was less effective on stem elongation than GA, but it also seemed to be effective on the enhancement of fiber development.

  • PDF

Alleviation of Low and High Temperature Injury in Tomato Plants by Uniconazole (Uniconazole처리가 토마토의 저온 및 고온 피해 경감에 미치는 효과)

  • Ku, Ja Hyeong;Lee, Young Bok
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was carried out to determine the effectiveness of uniconazole in ameliorating low and high temperature injury in tomato plants(Lycopersicon esculentum Mill. cvs. Fireball and Patio). Plants were given a soil drench of 0, 0.001, 0.01 or $0.1mg{\cdot}pot^{-1}$ uniconazole, and after 14 days, were treated with 12-h day/12-h night cycles at $25/25^{\circ}C$, $2.5/25^{\circ}C$, $25/2.5^{\circ}C$ or $40/40^{\circ}C$ for 4 days in controlled-environment chamber. Number of damaged leaves per plant, reduction of stem elongation, and overall injury were high at $2.5/25^{\circ}C$, but more reduction of leaf elongation, delay of flowering, and abortion of floral bud were observed in plants at $40/40^{\circ}C$. There was difference in degree of injury between cultivars, thus, 'Fireball' was much affected by unfavorable temperature regimes. All concentrations of uniconazole reduced leaf and stem elongation, increased total chlorophyll concentration, delayed flowering, and significantly provided protection against low and high temperature injury in two cultivars. In general, the application of uniconazole did not inhibit flowering delay and floral bud abortion induced by high and low temperature exposure. Our results support the hypothesis that the role of uniconazole is related to defense system against oxidative stress induced by low temperature stress. Further research is required to clarifu the phytoprotective mechanism of this compound agaist high temperature stress.

  • PDF

The Effects on Yield, Fruit Characteristics and Growth caused by Low Temperature Treatment of Cucumber (Cucumis sativus L.) Seedling (오이묘의 저온처리가 생육, 과실특성 및 수량에 미치는 영향)

  • Nam, Y.I.;Woo, Y.H.;Hong, K.H.;Lee, K.H.;Suh, G.S.;Kim, J.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2008
  • This study was conducted to investigate the influence of chilling temperature and duration at different seeding stages on yield, fruit characteristics and growth of cucumber in a greenhouse. When 20-day-old cucumber were exposed to 0 and 3℃ for 10 hours, 25 and 30% reduction in the main stem elongation rate and 34 and 37% reduction in total leaf area per plant were observed. The reduction in stem elongation and total leaf area was apparently associated with the increases in chilling duration. Exposure of seedlings to 6℃ failed to causes any significant differences in growth as compared to the unchilled plants. Repeated exposure of seedlings to 3℃ chilling for 10 hours per day increased the chilling injury significantly. The seedlings exposed to low temperature for 3 consecutive days exhibited severe injury as compared to the seedlings exposed to chilling treatment only once or twice. Fruit elongation rate was inhibited by approximately 10%, such as 0.59~2.26cm/day, with chilling of 15 hours at 0℃ as compare to 0.61~2.60cm/day in the non-chilled plants. Chilling treatment at 0~3℃ for 10 hours reduced the percentage of marketable fruits by 25~26%. while it increased the percentage of severely bent fruits significantly. Total fruits yield was reduced by 15~25% in cucumber plants when the chilling treatment was given to 20-day-old seedlings and by 22~37% in 30-day-old seedlings. This shows that, Larger seedlings were more sensitive to chilling. Total yield was also influenced by the duration of chilling. Definitely, at 0℃, 5-hour chilling treatment caused 18% of reduction, 10-hour caused 30%, and 15-hour caused 36%, respectively.

Study on the Elongation of Crown Root in Rice Plant (Oryza sativa L.) (수도관근의 신장에 관한 연구)

  • 정원일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 1982
  • 1t is well known that the stem is filed with shoot units in the rice plant and each internode bears several crown roots. But it has not yet been ascertained that what controls the differential elongation of the crown roots in the same internode. Thereupon, author had been carried out this experiment to ascertain what controls the elongation of the crown roots in the same internode, especially on the conception of sink-source by leaf-cutting method. Generally, one shoot unit has two important sinks: one axillary bud (tiller) and several crown roots. When we removed the axillary bud, namely shoot unit has one sink: several crown roots, the crown roots formed near the midvein (source) were longer than the crown roots born near the axillary bud. And when the shoot unit has two sinks: one axillary bud and several crown roots, the other way, the crown roots formed at the prophyll unit of the tiller were longest, and the crown roots formed near the midvein were shortest and the crown roots born the near the tiller showed interim length. Juding from the present results, we can suppose that, when shoot unit has two sinks, axillary bud is superior sink than the crown roots. So that axillary bud grows faster than crown roots and tiller becomes a new source. Therefore the crown roots which formed at the new source and the crown roots born the near the new source are longer than others.

  • PDF