• Title/Summary/Keyword: leaf area rate

Search Result 537, Processing Time 0.026 seconds

Seasonal Growth Patterns of Perennial Ryegrass Varieties IV. Growth analysis in spring growth (Perennial Ryegrass 품종의 계절별 생육특성 IIV. 봄철 생육의 생장해석)

  • 김성규;이주삼;조익환
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.12 no.4
    • /
    • pp.226-231
    • /
    • 1992
  • This experiment was carried out to estimate the dry matter accumulation using growth analysis in spring growth of perennial ryegrass varieties grown under space planting conditions, based on the data of previous paper9'. The results obtained were as follows: 1. Growth parameters of leaf area ratio(LAR), specific leaf area(SLA) and leaf weight ratio(LWR) were recognized siginificant differences between varieties. But, specific leaf area(SLA), leaf weight ratio (LWR) and relative tiller appearance rate(RTAR) were recognized significant differences between growth stages. Specific leaf area(SLA) was significant difference for the interaction of variety Xgrowth stage. 2. The relative growth rate of biological yields(BYRGR) indicated significantly positive correlations with relative growth rate of shoot(RGR) and root(RWGR), and net assimilation rate(NAR) as affected by the varieties and growth stages. 3. The relative growth rate of biological yields(BYRGR) indicated significantly positive correlation with nct assimilation rate(NAR) in all varieties. Leaf area ratio(LAR) had significantly positive correlation with specific leaf area(SLA) in all varieties, but shows a significant negative correlation with leaf weight ratio(LWR) of Maprima variety. 4. The relative growth rate of biological yields(BYRGR) indicated significantly positive correlations with the absolute growth rates of yield components.

  • PDF

Effects of Water Deficit on Leaf Growth during Vegetative Growth Period in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • Leaf area is critical for crop light interception, and thereby has a substantial influence on crop yield. This experiment was conducted to characterize the development of soybean [Glycine max (L.) Merr.] leaf area. Plastochron index and leaf relative growth rate of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. First, plastochron ratio (PR) and plastochron index (PI) were evaluated in greenhouse to compare the leaf growth rate between two genotypes under well-watered condition. There was reasonable constancy of PR between two genotypes. The PR means of Jackson and PI416937 were 0.41 and 0.44, respectively. A fairly smooth increase of PI during vegetative stage was observed. Second, the relative growth rates were graphed against leaf area, normalized with respect to final leaf area, under well-watered and water-deficit conditions. Leaf growth was sustained longer in well-watered condition than water-deficit condition and there was a sizable proportion of leaves which was ceased earlier their growth in water-deficit condition compared to well-watered condition. The leaf relative growth rate of Jackson until leaves had completed at 45% of their growth during water deficit period was higher than that of PI416937.

  • PDF

Population Dynamics of Symplocarpus renifolius 1. Population Structure and Vegetative Growth (앉은부채 (Symplocarpus renifolius) 개체군의 동태 1.개체군의 구조와 영양생장)

  • Min, Byeong-Mee;Kang, Hyun-Jung
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.453-461
    • /
    • 1994
  • Size class structure and vegetative growth of a perennial herb of the temperate deciduous forests, Symplocarpus renifolius Schott, were studied from 1991 to 1994 in Namhansansung, Kyonggi Province, Korea. The size class structures of leaf number and leaf area per individual followed bell-shape curve, i.e. frequency of middle class was relatively high. The leaf area increased from the late-March to mid-May. At the end of the growing season, leaf area(length X breadth) was proportional to biomass, especially aboveground biomass. The leaf number and leaf area per individual increased at the rate of 0.08 leaf/year and 9.7 $cm^2/year$, respectively. The size of the individuals in large-sized classes, in leaf number and leaf area, decreased in next year, while the size of the individuals in small-sized classes increased. Therefore, it was concluded that the size class structure of S. renifolius population was largely determined by the growth form.

  • PDF

Estimating Potential Growth of Single-node Cuttings for Applying Single-stemmed Rose to Factory System (장미 공장생산시스템 적용을 위한 Single-node 삽목묘의 잠재생장)

  • Kim, Wan-Soon;Lee, Yong-Beom;Nam, Yoon-Il;Kim, Hyung-Jun
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.79-80
    • /
    • 2001
  • This study was conducted to estimate rooting and shooting in single-node cuttings (SNC) of roses 'Rote Rose' and 'Teresa' to several conditions: growth stage, node position, and leaf area of cutting, so that single-stemmed roses (SSR) could be used in rose factory system. There was no effects of growth stage of flowering shoots far cutting on the rooting and shooting of SNC in both of the two cultivars. However, the node position and leaf area of cuttings significantly affected the rooting and shooting of SNC: the speed was accelerated with larger leaf area and upper node cuttings, but the rate showed little difference as above 95%. Based on above results, rooting and shooting in SNC was forced by leaf area mainly, followed by node positions. On the other hand, flowering rate of shoots from SNC was improved mainly with larger leaf area in cuttings. Shoots of 45cm-longer, qualified for rose factory system, increased with lower node and larger leaf area significantly. Therefore, it could be said that the potential growth of shoots from SNC would be influenced mainly by leaf area, followed by node position on cutting.

  • PDF

Relationship between the sexual and the vegetative organs in a Polygonatum humile (Liliaceae) population in a temperate forest gap

  • Min, Byeong-Mee
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.256-264
    • /
    • 2017
  • Background: The aim of this study was to clarify the relationship between the sexual reproduction and the resource allocation in a natural Polygonatum humile population grown in a temperate mixed forest gap. For this aim, the plant size, the node which flower was formed, the fruiting rate, and the dry weight of each organ were monitored from June 2014 to August 2015. Results: Firstly, in 3-13-leaf plants, plants with leaves ${\leq}8$ did not have flowers and in plants with over 9 leaves the flowering rate increased with the number of leaves. Among plants with the same number of leaves, the total leaf area and dry weight of flowering plants were larger than those of non-flowering plants. The minimum leaf area and dry weight of flowering plants were $100cm^2$ and 200 mg, respectively. Secondary, the flowers were formed at the 3rd~8th nodes, and the flowering rate was highest at the 5th node. Thirdly, cumulative values of leaf properties from the last leaf (the top leaf on a stem) to the same leaf rank were greater in a plant with a reproductive organ than in a plant without a reproductive organ. Fourthly, fruit set was 6.1% and faithful fruit was 2.6% of total flowers. Biomasses of new rhizomes produced per milligram dry weight of leaf were $0.397{\pm}190mg$ in plants that set fruit and $0.520{\pm}0.263mg$ in plants that did not, and the difference between the 2 plant groups was significant at the 0.1% level. Conclusions: P. humile showed that the 1st flower formed on the 3rd node from the shoot's base. And P. humile showed the minimum plant size needed in fruiting, and fruiting restricted the growth of new rhizomes. However, the fruiting rate was very low. Thus, it was thought that the low fruiting rate caused more energy to invest in the rhizomes, leading to a longer rhizome. A longer rhizome was thought to be more advantageous than a short one to avoid the shading.

Effects of Plant Age and Cultural Conditions on Leaf Shape of Korean Ginseng (년생 및 재배조건이 인삼의 엽형에 미치는 영향)

  • 이종철;최창렬
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.178-183
    • /
    • 1984
  • This study was conducted to know the influence of plant age and cultural conditions such as plant population density and light intensity under the shading on the leaf shape of panax ginseng. The result obtained were as follows; 1) Leaf length(L)/maximum width(W) was no difference with different age of over 3-over 3year old plant, but that of 1 or 2-yearold was smaller than those of over 3-year old. The values of L/W showed in the order of 2 or 4,3, 1 or 5 leaflet. 2) Ratios of leaflet area to leaf area were 32.0% in leaflet 3, from 209.% to 27.9% in leaflet 2 or 4, and from 6.5% to 7.1% in leaflet 1 or 5. 3) The coefficients of variability for L/W and ratio of leaflet area to leaf area of leaflet 3 were smallest among leaflets. 4) There were significant differences between largest and smallest leaflet 3, leaf areas and ratio of leaflet 3 area to leaf area in same plant. 5) LW and ratio of leaflet 3 area to leaf area were not affected by plant population density. 6) It showed a tendency that the L/W was increased with increasing the light transmittance rate (LTR). The ratio of leaflet 3 area to leaf area of ginseng grown under 20% LTR was not different comparing to that of plant grown under 5% LTR, but it was significantly increased in plant grown at 100% LTR.

  • PDF

Characteristics of Photosynthesis and Leaf Growth of Peucedanum japonicum by Leaf Mold and Shading Level in Forest Farming (임간재배지 내 부엽토 및 차광수준에 따른 갯기름나물의 광합성과 엽생장 특성)

  • Song, Ki Seon;Jeon, Kwon Seok;Choi, Kyu Seong;Kim, Chang Hwan;Park, Yong Bae;Kim, Jong Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • This study was carried out in order to investigate the photosynthesis response and leaf characteristics of Peucedanum japonicum growing in forest farming. The experiment was performed by leaf mold (pine tree and chestnut tree) and shading levels (0%, 35%, 50% and 75% shading). Light relative intensity was 100% (full sunlight), 60.3% (35% shading), 35.1% (50% shading), and 17.4% (75% shading) respectively. Light response curves of pine-leaf mold and chestnut-leaf mold were the highest in control (full sunlight) and these were getting lower in the higher shading level. Photosynthesis capacity and light saturation point were indicated higher in chestnut-leaf mold within the same shading level. As the shading level increased, maximum photosynthesis rate decreased. And apparent quantum yield was not indicated statistically significant difference from all treatment. Leaf area, leaf length and leaf width were significant higher in 35% shading and control under chestnut-leaf mold in all treatment. As the shading level increased, LAR (leaf area ratio), SLA (specific leaf area) and SPAD value decreased in pine-leaf mold and chestnut-leaf mold. As a result of surveying the whole experiment, P. japonicum is judged better growth and higher yield by maintaining 35% shading (relative light intensity 60%) under chestnut-leaf mold in forest farming.

Leaf Growth and Forage Yield in Three Cultivars of Orchardgrass ( Dactylis glomerata L. ) over Cutting Stages I. Seasonal regrowth and anatomy of leaves (오차드그라스 ( Dactylis glomerata L. ) 품종들의 예취에 따른 엽생장과 수량형성 I. 오차드그라스 품종들의 계절별 엽의 재생과 조직형성)

  • 김훈기;이호진
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.3
    • /
    • pp.104-109
    • /
    • 1988
  • A field experiment was conducted in order to investigate the seasonal changes of leaf growth and related characteristics in three cultivars of orchardgrass; Potomac, Kay and Sumas. The results were summarized as follows: 1. Leaf elongation was increased in a nearly linear phase during first and third cutting stages. It was increased slowly in early 10 days to 15 days after cutting and increased rapidly thereafter during the rest cutting stages. In cultivars, Potomac was showed hlgher leaf elongation than other cultivars during all cutting stages. There was no difference of leaf width within cutting stages, but the leaf width of fall regrowth was narrow. Sumas had relatively short and wide leaves. 2. Leaf dry weight and leaf area in first cutting stage were larger than others. Leaf area was increased rapidly from 15 days after cutting and leaf $we$ was increased rapidly from 20 days over all cutting stages. The increase in leaf area and dry weight were slow down after 30 days. 3. Number of epidermal cells was increased rapidly after cutting and the rate of increase was slow down after 30 days. In a cross section of leaf tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissues. Leaf tissue had a large vacancy at early growth period after harvest and was filled gradually with mesophyll. This result was related to the increase of leaf dry matter.

  • PDF

Variation of Characteristics and Photosynthetic Rates among the Species of Leaf Mustard (Brassica juncea) (갓 품종간의 형질 및 광합성 변이)

  • Lee, In-Ho;Park, Jong-In;Jung, Gun-Ho;Nou, Ill-Sup
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1127-1133
    • /
    • 2010
  • The total photosynthetic rate in leaf mustard lines, which was calculated as the sum of the photosynthetic rate and the respiration rate, was not significantly different from their photosynthetic rate. Plant height, standing of rosetteness, showed a similar change to its specific leaf area (SLA). With increasing the plant height, leaf density increased and leaf color was lighter. It was found that shoot dry weight of leaf mustard was more affected by respiration. Also, it was hypothesized that respiration occurred not only in the leaf but also the stem. It was found that mustard lines whose leaf density was low showed a higher shoot growth. From this result, it was concluded that selection of a leaf mustard line with a larger SLA and lower leaf thickness could be effective in increasing photosynthetic rate.

Effect of Nitrogen Rate and Planting Density on Early Growth in Wheat

  • Song, Chang-Khil;Richard A, Richards
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • This experiment was conducted with nine wheat geno-types to choose the wheat which has excellent early vigour. 'Vigour 18' and 'ZL 59A' are excellent in the long coleoptile genotype, while 'Amery' and 'Janz' are excellent in the short coleoptile genotype. Responding to the growth stage and nitrogen level, Vigour 18 is predominant in the long coleoptile genogype, while Janz in the short coleoptile genotype. Responding to sowing density and nitrogen level, the higher the sowing density was, the shorter the leaf area of Vigour 18 and Janz. Also the leaf area turned out to larger in the plot fertilized with high nitrogen than in the plot fertilized with low nitrogen. This is true of leaf weight and root weight. Concerning specific leaf area (SLA) and leaf area ratio (LAR), the higher the sowing density was, the SLA tended to grow larger, while the SLA grew larger in the plot fertilized with low nitrogen, as were found in Vigour 18 and Janz. The roots of long coleoptile genotype, Vigour 18, turned out to grow longest on the plot sown with 3 seeds. While the roots of short coleoptile genotype, Janz, grew longest on the plot sown with 2 seeds. The relative growth rate (RGR) was the same at low N rates and high N rates. The RGR was 0.071 and 0.072 g $g^{-1}d^{-1}$ at low N rates and high N rates. The partitioning of RGR into net assimilation rate (NAR) and LAR showed that the average LAR at low N rates was similar to the LAR at high N rates. Variation within each cultivar in the LAR and NAR was small relative to the difference between them at low N rates and high N rates. Above ground mass was 8.2 mg greater at high N rates than low N rates, whereas leaf area was 0.05 $\textrm{m}^2$$kg^{-l}$ greater at high N rates than low N rates. The NAR was similar at low N rates and high N rates, whereas LAR was greater at high N rates (0.05 $\textrm{m}^2$$kg^{-l}$); variation in SLA was responsible for the variation in NAR and LAR both at low N rates and high N rates. NAR was more closely associated with the reciprocal of SLA.

  • PDF