• Title/Summary/Keyword: leading edge

Search Result 656, Processing Time 0.03 seconds

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF

제공전투기의 초음속 순항 성능 향상을 위한 가변 앞전형상 에어포일의 개념설계 제안

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.647-652
    • /
    • 2016
  • To reduce drag force at supersonic speeds, sharp leading edge is hugely efficient. It is, however, incompatible with leading edge shape to have fine aerodynamic characteristics at subsonic and transonic speeds. It is critical to reduce drag force for enhanced cruise performance and higher efficiency. An air superiority fighter, however, required to have high maneuverability for survivability, and sharp leading edge is not proper. Consequently, variable leading edge is demanded to reduce drag force significantly at supersonic speeds for cruise performance. Leading edge altering system is constructed with rigid material to improve possibility of realization, and minimized movement of its components in altering for reduce effects on flight. It is compared with bi-convex airfoil and NACA 65-006 airfoil, which have comparable maximum thickness. At Mach number 1.7 and zero angle of attack, supersonic mode of designed airfoil indicates approximately 17% higher drag coefficient than the bi-convex airfoil indicates, it is, however, 23% lower than the NACA 65-006 indicates. Also, subsonic mode of the designed airfoil shows fine aerodynamic characteristics in comparison with NACA 65-006 airfoil in subsonic and transonic speed range. In this regard, design of the airfoil achieved the object of this study satisfactorily.

  • PDF

Flow Characteristics of a Paraglider Canopy with Leading-edge Tubercles (선단돌기가 적용된 패러글라이더 캐노피의 유동특성 연구)

  • Shin, Jeonghan;Chae, Seokbong;Shin, Yisu;Park, Jungmok;Song, Ginseok;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.106-114
    • /
    • 2021
  • In the present study, we investigate the flow characteristics of a paraglider canopy with leading-edge tubercles by performing force measurement and surface flow visualizations. The experiment is conducted at Re = 3.3×105 in a wind tunnel, where Re is the Reynolds number based on the mean chord length and the free-stream velocity. The canopy model with leading-edge tubercles has flow characteristics of a two-step stall, showing an earlier onset of the first stall than the canopy model without leading-edge tubercles. However, the main stall angle of the tubercled model is much larger than that of the canopy model without tubercles, resulting in a higher aerodynamic performance at high angles of attack. The delay in the main stall is ascribed to the suppression of separation bubble collapse around the wingtip at high angles of attack.

Influence of Leading Edge Radii on Hydrodynamic Performances of a Foil Section

  • Ahn, Jong-Woo;Moon, Il-Sung;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.1-16
    • /
    • 1999
  • The incompressible Reynolds-Averaged Navier-Stokes(RANS) equations are solved using the standard $\textsc{k}-\varepsilon$ turbulence model and a finite volume method(FVM)with an O-type grid system. The computed results for its performance test are in good agreement with the published experimental data. The present method is applied to the study on the leading edge radius of a hydrofoil section Calculated results suggest that the leading edge radius has some effects on cavitation performances of a 2-D foil. A natural leading edge radius for the NACA66 section is determined from this study.

  • PDF

A Leading-Edge Operation Program of the East Sea Branch, KORDI

  • Jeon, Dong-Chull
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.209-214
    • /
    • 2006
  • The East Sea Branch (ESB) of KORDI will be launched in 2008. She will take a role of monitoring the sea surface topography and temperature by satellites, short- and long-term sea levels by tide gauges, coastal currents and open-sea circulation by setting up coastal radars and mooring current-meters and acoustic equipments, as well as monitoring nearshore processes, coastal erosion and water pollution. A basic program of coastal zone management will help ocean-policy makers to set up right decisions based upon scientific background of the regional data in the East Sea. Networking among the neighboring countries around the sea will supply more useful information not only for experts but also for ordinary vacationers or fishermen. In order for this program to be successfully settled down during the next decade, it is necessary for a leader to have the right vision to attract more experts from global brain pools and to manage the ESB as a leading-edge observatory in the world. Details about this leading-edge operational program are introduced in the text.

Numerical Evaluation of Flow and Performance of Turbo-Pump Inducers (터보펌프 인듀서의 유동 및 성능의 수치적 평가)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.243-249
    • /
    • 2001
  • Steady state flow calculations are executed for turbo-pump inducers of modem design to validate the performance of Tascflow code. Hydrodynamic performance is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main source of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of pressure loss through the whole blade. The total viscous loss is considerably large due to the strong secondary flow.

  • PDF

Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge (블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어)

  • Kim, Jeong-Rae;Moon, Young-June;Chung, Jin-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.

AERODYNAMIC ANALYSIS ON LEADING-EDGE SWEEPBACK ANGLES OF FLYING-WING CONFIGURATIONS (전익기 형상의 앞전후퇴각 변화에 따른 공력해석)

  • Lee, J.M.;Chang, J.W.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.48-55
    • /
    • 2006
  • A computational study was carried out in order to investigate aerodynamic characteristics on leading edge sweepback angles of Flying-Wing configurations. The viscous-compressible Navire-Stokes equation and Spalart-Allmaras turbulence model of the commercial CFD code were adopted for this computation analysis. This investigation examined aerodynamic characteristics of three different types of leading edge sweepback angles: $30^{\circ}C,\;35^{\circ}C\;and\;40^{\circ}C$. The freestream Mach number was M=0.80 and the angle of attack ranged from ${\alpha}=0^{\circ}C\;to\;{\alpha}=20^{\circ}C$. The results show that the increases in sweepback angle of the Flying-Wing configuration creates more efficient aerodynamic performance.

Application of Matched Asymptotic Expansion for Designing a Leading Edge of Super-cavitating Foil

  • Yim, Bo-hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.11-18
    • /
    • 1997
  • The leading edge of a low-drag super-cavitating foil has been made to be thick enough by using a point drag which is supposed to be a linear model of the Kirchhoff lamina. In the present paper, the relation between the point drag and the Kirchhoff lamina is made clear by analyzing the cavity drag of both models and the leading edge radius of the point drag model and the lamina thickness of Kirchhoff\`s profile K. The matched asymptotic expansion is effectively made use of in designing a practical super-cavitating fool which is not only of low drag but also structurally sound. Also it has a distinct leading edge cavity separation point. The cavity foil shapes of trans-cavitating propeller blade sections designed by present method are shown.

  • PDF

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.