• Title/Summary/Keyword: lead-free NKN ceramics

Search Result 54, Processing Time 0.031 seconds

Structural and piezoelectric properties of lead-free (1-x)$(Na_{0.5}\;K_{0.5})NbO_3$-xBa($Ti_{0.9}$, $Sn_{0.1}$)$O_3$ ceramics

  • Cha, Yu-Jeong;Nam, San;Kim, Chang-Il;Jeong, Yeong-Hun;Lee, Yeong-Jin;Baek, Jong-Hu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.33.1-33.1
    • /
    • 2009
  • Lead-free (1-x)$(Na_{0.5}K_{0.5})NbO_3$-xBa($Ti_{0.9}Sn_{0.1})O_3$ [NKN-BTS-100x] ceramics doped with 1 mol% $MnO_2$ have been prepared by the conventional solid state method and their structural and piezoelectric properties were investigated. The NKN-BTS-100x ceramics exhibited a dense and homogeneous microstructure when they were sintered at $1030-1150^{\circ}C$. Grain growth was observed for the specimen sintered at relatively low temperature of $1050^{\circ}C$. A tetragonal/orthorhombic morphotropic phase boundary (MPB) in the perovskite structure was also appeared for the NKN-BTS-100x ceramics (0.04$1050^{\circ}C$. The enhanced piezoelectric properties in the NKN-BTS ceramics with a MPB composition were obtained. Especially, for the NKN-BTS-6 ceramics, a high dielectric constant (${\varepsilon}^T_3/\varepsilon_0=1,400$), piezoelectric constant ($d_{33}=237$) and electromechanical coupling factor ($k_p=0.42$) were obtained.

  • PDF

Piezoelectric Properties of NKN-BZT Ceramics Sintered with CuO and ZnO Additives (CuO와 ZnO 첨가에 따른 NKN-BZT 세라믹스의 압전 특성)

  • Lee, Seung-Hwan;Baek, Sang-Don;Lee, Dong-Hyun;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.636-640
    • /
    • 2011
  • The lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-(hereafter NKN-BZT) CuO, ZnO-doped ceramics were prepared using a conventional mixed oxide method. NKN-BZT ceramics doped CuO, ZnO have superior structural and electrical properties than pure NKN-BZT ceramics. For the NKN-BZT-ZnO ceramics sintered at $1,120^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 172 pC/N. The $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-ZnO ceramics are a promising candidate for lead-free piezoelectric materials.

Fabrication and Characteristic of AE sensor using the Lead-free NKN Ceramics (무연 NKN 세라믹스를 이용한 AE 센서 제작 및 특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.39-40
    • /
    • 2006
  • AE sensor using lead-free ceramics should be developed for prohibiting environment protection. In this study, Langevin type AE sensor was manufactured as air backing structure. Here, the piezoelectic element was used as PZT(EC-65) and NKN, respectively. The resonant frequency of AE sensor using PZT was 143 kHz and the resonant frequency of AE sensor using NKN was 178 kHz. The waveform of AE sensor using NKN was responded more sensitively than that of AE sensor using PZT.

  • PDF

Piezoelectric and Dielectric Properties of NKN-(1-x)BNT-xBT Ceramics (NKN-(1-x)BNT-xBT 세라믹스의 압전 및 유전특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.771-775
    • /
    • 2010
  • In this study, piezoelectric and dielectric properties of the $(Na_{0.5}K_{0.5})NbO_3-(1-x)(Bi_{0.5}Na_{0.5})TiO_3-xBaTiO_3$ [NKN-(1-x)BNT-xBT] ceramics were investigated. The lead-free NKN-(1-x)BNT-xBT ceramics were fabricated by a conventional mixed oxide method. The results indicate that the addition of $BaTiO_3$ significantly influences the sintering, microstructure, phase transition and electrical properties of NKN-BNT ceramics. A gradual change in the piezoelectric and dielectric properties was observed with the increase of BT contents. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the morphotropic phase boundary (MPB). The $d_{33}$=184 pC/N, $k_p$=0.38, dielectric constant=1455 with dielectric loss value of less than 1% were obtained for the NKN-0.95BNT-0.05BT ceramics sintered at $1150^{\circ}C$ for 2h. These results demonstrate that the NKN-(1-x)BNT-xBT ceramics is an attractive candidate for lead-free piezoelectric materials.

Electrical Properties of Lead Free (1-x)(Na0.5K0.5) NbO3-xLiNbO3 Piezoelectric Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.721-725
    • /
    • 2016
  • This work focuses on the electrical conduction mechanism in a lead free ($Na_{0.5}K_{0.5}NbO_3$ ; NKN) ceramics system with $LiNbO_3$ content of approximately critical concentration $x{\geq}0.2$. Lead free $(1-x)(Na_{0.5}K_{0.5})NbO_3-x(LiNbO_3)$, $NKN-LN_x$ (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient $k_p$ decreases and the phase transition temperature $T_c$ increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ${\varepsilon}^{\prime}$ and $k_BT{\varepsilon}^{\prime\prime}$ showed anomalies around $T_c$ ($462^{\circ}C$ in the NKN-LN0.1 and $500^{\circ}C$ in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as $E_I=1.76eV$ (NKN-LN0.1) and $E_I=1.55eV$ (NKN-LN0.2), above $T_c$, and $E_{II}=0.78$ (NKNL-N0.1) and $E_{II}=0.81$ (NKN-LN0.2) below $T_c$. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of $Li^+$ ions.

Piezoelectric Properties of NKN-LST Ceramics with ZnO and CuO Addition (ZnO와 CuO 첨가에 따른 NKN-LST 세라믹스의 압전 특성)

  • Lee, Seung-Hwan;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.632-635
    • /
    • 2011
  • Additions (ZnO, CuO) doped $0.98(Na_{0.5}K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ta_{0.83})O_3$ (0.98NKN-0.02LST-x) lead free piezoelectric ceramics have been fabricated by ordinary sintering technique. The effects of additions doping on the dielectric, piezoelectric, and ferroelectric properties of the ceramics were mainly investigated. X-ray diffraction of the sample appeared orthorhombic phase. The specimen doped with additions exhibits enhanced electrical properties ($d_{33}$= 153 pC/N). These results indicate that the 0.98NKN-0.02LST-x ceramics is a promising candidate for lead-free piezoelectric ceramics for applications such as piezoelectric actuators, harmonic oscillator and so on.

Structure and piezoelectric properties of NKN-LST ceramics with sintering temperature (소결온도에 따른 NKN-LST 세라믹스의 구조 및 압전 특성)

  • Lee, Young-Hie;Beak, Sang-Don;Choi, Eui-Sun;Kim, Jae-Sik;Bae, Gi-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1434-1435
    • /
    • 2011
  • In this study, NKN-LST ceramics were prepared by a conventional mixed oxide method and their structure and piezoelectric properties were investigated with the variations of sintering temperature. It was observed that the various sintering temperatures influenced the electrical properties and structural properties of the NKN-LST ceramics. It was found that the piezoelectric properties of NKN-LST ceramic sintered at $1080^{\circ}C$ for 4h has a piezoelectric constant and a planar electromechanical coupling coefficient of 161pC/N and 0.311% respectively. This ceramics look very promising as possible, practicable, lead-free replacements for lead zirconate titanate.

  • PDF

Piezoelectric properties of (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ ceramics with composition (조성비에 따른 (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ 세라믹스의 압전 특성)

  • Lee, Young-Hie;Lee, Dong-Hyun;Bae, Seon-Gi;Lee, Sang-Chul;Choi, Dal-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1436-1437
    • /
    • 2011
  • (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ lead free piezoelectric ceramics were synthesized to enhance the piezoelectric properties of (Na,K)$NbO_3$. The synthesis and sintering method were the conventional solid state reaction method and general sintering method in air atmosphere. We report the improved piezoelectric properties in the perovskite structure composed of the NKN and BZT ceramics. We investigated the effects of NKN, BZT on the structural and electrical properties of the NKN-BZT ceramics. The NKN-BZT ceramics show good performance with piezoelectric constant $d_{33}$=155pC/N. The results reveal that (1-x)(Na,K)$NbO_3$-xBa(Zr,Ti)$O_3$ ceramics are promising candidate materials for lead-free piezoelectric application.

  • PDF

Ferroelectric Phase Transition of Lead Free (1-x)(Na0.5K0.5)NbO3-xLiNbO3 Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.297-300
    • /
    • 2012
  • Lead-free (1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$, i.e., NKN-LNx (x=0.0, 0.1, 0.2, 0.3, 0.4 mol) was prepared using the conventional solid state reaction method. The effects of LN mixing on the ferroelectric properties of NKN-LNx ceramics were studied using a dielectric constant and P-E (Polarization-electric field) measurements. Ferroelectricity was observed in the composition for x approximately varying between 0.0 and 0.4. Minimum remanent polarization $2P_r=5C/cm^2$ was achieved in the composition for x = 0.2. The ferroelectric phase transition temperature $T_C$ increased with increasing LN content. The ferroelectric phase transition of NKN-LNx ($x{\geq}0.1$) is a second-order phase transition, and that of NKN-LNx ($x{\leq}0.2$) is a first-order phase transition. These results indicate that the ferroelectric phase transition temperature of NKN-LNx change from that of second-order to weak first-order phase transition according to the LN content.

Effect of $Li_2O$ Addition on Piezoelectric Properties of NKN-5LT Ceramics

  • Kim, Min-Soo;Lee, Dae-Su;Park, Eon-Cheol;Jeong, Soon-Jong;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.694-695
    • /
    • 2006
  • As a candidate for lead-free piezoelectric materials, dense $95(Na_{0.5}K_{0.5})NbO_3-5LiTaO_3$ (NKN-5LT) ceramics were developed by conventional sintering process. Sintering temperature was lowered by adding $Li_2O$ as a sintering aid. The electrical properties of NKN-5LT ceramics were investigated as a function of $Li_2O$ concentration. At the addition of 1 mol% $Li_2O$, electromechanical coupling factor $(k_P)$ and piezoelectric coefficient $(d_{33})$ of NKN-5LT ceramics were found to reach the highest values of 0.37 and 250 pC/N, respectively.

  • PDF