• Title/Summary/Keyword: lead-filled steel tube dampers

Search Result 1, Processing Time 0.014 seconds

Nonlinear identification of Bouc-Wen hysteretic parameters using improved experience-based learning algorithm

  • Luo, Weili;Zheng, Tongyi;Tong, Huawei;Zhou, Yun;Lu, Zhongrong
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.101-114
    • /
    • 2020
  • In this paper, an improved experience-based learning algorithm (EBL), termed as IEBL, is proposed to solve the nonlinear hysteretic parameter identification problem with Bouc-Wen model. A quasi-opposition-based learning mechanism and new updating equations are introduced to improve both the exploration and exploitation abilities of the algorithm. Numerical studies on a single-degree-of-freedom system without/with viscous damping are conducted to investigate the efficiency and robustness of the proposed algorithm. A laboratory test of seven lead-filled steel tube dampers is presented and their hysteretic parameters are also successfully identified with normalized mean square error values less than 2.97%. Both numerical and laboratory results confirm that, in comparison with EBL, CMFOA, SSA, and Jaya, the IEBL is superior in nonlinear hysteretic parameter identification in terms of convergence and accuracy even under measurement noise.