• Title/Summary/Keyword: lead (Pb)

Search Result 1,396, Processing Time 0.031 seconds

Characteristics and Manufacturing Technology of the Angbuilgu Treasure with Plate Pillars Decorated with a Dragon in Clouds (운룡주(雲龍柱) 보물 앙부일구의 특성과 제작 기술)

  • YUN Yonghyun;MIHN Byeonghee;KIM Sanghyuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.24-37
    • /
    • 2023
  • This study analyzes the materials and external characteristics of the Angbu-ilgu, a kind of scaphe sundial, which was newly designated as a Korean Treasure in 2022. The Angbu-ilgu Treasure is owned by three institutions - the National Palace Museum Of Korea, Gyeongju National Museum, and Sungshin Women's University Museum - and is similar as a twin in its material, size, outward appearance, as well as production techniques that include casting, silver inlays, and metal joints. The Three-Treasure Angbu-ilgu is made of brass in the ratio of 90.6: 6.0: 1.8 with Cu: Zn: Pb. This composition clearly differs from Treasure No. 845, an Angbuilgu which has a composition ratio of 82.2: 3.7: 11.8 with Cu: Zn: Pb. In this new Angbu-ilgu Treasure, the hemisphere's stand has four vertical pillars sculpted in a dragon pattern and bilateral wings carved in a cloud pattern on the pillars, which are joined to the hemisphere's horizontal ring with rivets and silver solders, respectively. The dragon-in-clouds pillar (雲龍柱) shows the most outstanding formative beauty of the various Angbu-ilgu pillars produced in the late Joseon Dynasty. It can be seen that the altitude of the north pole engraved on the Angbu-ilgu was made after 1713. Production is, however, actually estimated to have occurred close to the 19th century, the era of the Jinju Kang family, who were professional Angbuilgu makers. Hopefully, this study will lead to a historical science and technology review with modern scientific instruments analyzing the materials and external characteristics of the three Angbu-ilgus designated as a Korean Treasure in 2022.

Search for the Education of High-Tech Emotional Textile and Fashion (하이테크 감성 섬유패션의 교육 방향에 대한 모색)

  • Youn Hee Kim;Chunjeong Kim;Youngjoo Na
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.69-82
    • /
    • 2023
  • High-tech sensibility textile and fashion, in which consumers' emotions and various textile and fashion technologies are converged, is an important industrial group. It is important to develop the ability to apply in practice by gathering the creative by understanding other fields and exchanging ideas through interdisciplinary collaboration in the field of emotional engineering. Through interdisciplinary research and collaboration, talent must be nurtured of individuals who would lead the era of the 4th Industrial Revolution with the ability to empathize with others as well as the creative convergence-type intellectual ability necessary for the rapidly changing society. To determine content-creation methods, basic research is conducted. Additionally, this study investigates on the current status and educational process of the emotional textile-fashion industry worldwide. To nurture talents in the textile and fashion sensibility science, the basic contents are created to manage the knowledge that delivers sensibility science and the ICT related to this field, as well as in the intensive, PB-style conceptual design based on sensibility. The process from derivation of consumer emotion analysis and product development can be experienced through smart kit practice. Moreover, various methods are developed to set up intellectual property rights generated while developing ICT convergence products as start-ups. The study also covers new knowledge rights to develop emotional textile fashion.

A Study on Heavy Metal Concentrations of Oxidized Hair Coloring Products in Korea Market (한국에서 유통 중인 산화형 염모제의 중금속 농도에 관한 연구)

  • Choi, Chae Man;Hong, Mi Sun;Lee, Yun Jung;Kim, Hwa Soon;Kim, Hyun Jung;Kim, Jung Hun;Chae, Young Zoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.241-249
    • /
    • 2013
  • This study was aimed to provide the fundamental data about oxidized hair color products. For this reason, we collected 125 oxidized hair color products, which were distributed in domestic market from January to October, 2012, and measured the heavy metal concentrations of lead, arsenic, cadmium, chromium, manganese, nickel, copper in the samples. Results were compared by domestic, foreign, henna, type and color. The average metal concentrations were as follows; 0.211 ${\mu}g/g$ for lead, 0.008 ${\mu}g/g$ for cadmium, 0.051 ${\mu}g/g$ for arsenic, 0.954 ${\mu}g/g$ for chromium, 6.250 ${\mu}g/g$ for manganese, 0.591 ${\mu}g/g$ for nickel and 0.544 ${\mu}g/g$ for copper. In case of lead and arsenic, the concentrations were much less than the regulated amount (20 ${\mu}g/g$ and 10 ${\mu}g/g$, respectively) suggested by MFDS (Ministry of Food and Drug Safety). In henna (p < 0.05), the concentrations were significantly higher than those of other domestic and foreign oxidized hair color products as follows; 1.264 ${\mu}g/g$ for lead, 0.267 ${\mu}g/g$ for arsenic, 0.025 ${\mu}g/g$ for cadmium, 4.055 ${\mu}g/g$ for chromium, 72.044 ${\mu}g/g$ for manganese, 3.076 ${\mu}g/g$ for nickel and 4.640 ${\mu}g/g$ for copper. Statistically, it showed that the heavy metal concentrations were quite different for the different types of hair color products. The cream and liquid type products had the highest average concentration in chromium (0.708 ${\mu}g/g$, 0.478 ${\mu}g/g$, respectively). On the other hand, powder type products showed the highest concentration in manganese (60.041 ${\mu}g/g$). In addition, the concentrations of heavy metals and the color of products are not quite correlated. It was shown that average concentrations of lead and chromium were higher for yellow, chromium for red and pink, manganese for brown and black, and nickel for green.

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Lead-free BaTiO3-(Bi0.5K0.5)TiO3 PTCR Ceramics and Effects of Nb2O5 on Its PTCR Characteristics (무연 BaTiO3-(Bi0.5K0.5)TiO3 PTCR 세라믹과 PTCR 특성에 미치는 Nb2O5의 효과)

  • Jeong, Young-Hun;Park, Yong-Jun;Lee, Mi-Jae;Lee, Young-Jin;Paik, Jong-Hoo;Choi, Jin-Soo;Lee, Woo-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.475-481
    • /
    • 2008
  • Positive temperature coefficient of resistivity (PTCR) characteristics of (1-x)$BaTiO_3-x(Bi_{0.5}K_{0.5})TiO_3$ ceramics doped with $Nb_2O_5$ were investigated in order to develop the Pb-free PTC thermistor available at high temperatures of > $120^{\circ}C$. The PTCR characteristics appearing in the ($B_{i0.5}K_{i0.5})TiO_3$ (< 5 mol%) incorporated $BaTiO_3$ ceramics, which might be mainly due to $Bi^{+3}$ ions substituting for $Ba^{+2}$ sites. The 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics showed good PTCR characteristics of a low resistivity at room temperature (${\rho}_r$) of $31{\Omega}{\cdot}cm$ a high ${\rho}_{max}/{\rho}_{min}$ ratio of $5.38{\times}10^3$, and a high resistivity temperature factor (${\alpha}$) of $17.8%/^{\circ}C$. The addition of $Nb_2O_5$ to 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics further improved the PTCR characteristics. Especially, 0.025 mol% $Nb_2O_5$ doped 0.99$BaTiO_3-0.01(Bi_{0.5}K_{0.5})TiO_3$ ceramics exhibited a significantly increased ${\rho}_{max}/{\rho}_{min}$ ratio of $8.7{\times}10^3$ and a high ${\alpha}$ of $18.6%/^{\circ}C$, along with a high $T_c$ of $148^{\circ}C$ despite a slightly increased ${\rho}_r$ of $31{\Omega}{\cdot}cm$.

A Study on the recycling of sewage sludge cake using microwave drying (하수슬러지 케이크의 마이크로파 건조 후 재활용 연구)

  • Ha, Sang An;Yeom, Hae Kyong;You, Mi Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.77-84
    • /
    • 2006
  • The objective of this research is to evaluate various reclamation methods of sewage sludge cake after treating with microwave under optimum conditions. In this study the sewage sludge cakes used from S and N wastewater treatment plants in the P city. Microwave with an induced electricity heating way was employed for dehydration of sewage sludge cake. Microwave operation conditions is 2,450 MHz of frequency and the power with 1 to 4 kW. This sewage sludge cake had a moisture content of 70%. The moisture content of the sludge decreased notable up to 2%(wt) resulted in breaking of cell wall. When the treated sewage sludge cake mixed with soils could be applied to use midterm and last cover material soils. Moreover, the adsorption ability of heavy metals such as copper, lead, chromium and cadmium was greatly enhanced by treated sewage sludge cake. Within 30 minutes, 1ppm of copper, chromium and cadmium and 10ppm of lead with 1g of the treated sewage sludge cake in $100m{\ell}$ were below detection. It was possible to use the treated sewage sludge cake as an absorbent for absorption of toxic heavy metals. Results from this research indicated that using of microwave radiation was an effective method for treating sewage sludge cake economically and environmental. A point of view of reclamation, the treated sewage sludge cake appeared to be feasible with an adsorption of heavy metals in steady of using expensive yellow earth.

  • PDF

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Effects of Microstructure on the Creep Properties of the Lead-free Sn-based Solders (미세조직이 Sn계 무연솔더의 크리프 특성에 미치는 영향)

  • Yoo, Jin;Lee, Kyu-O;Joo, Dae-Kwon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • The Sn-based lead-free solders with varying microstructure were prepared by changing the cooling rate from the melt. Bulky as-cast SnAg, SnAgCu, and SnCu, alloys were cold rolled and thermally stabilized before the creep tests so that there would be very small amount of microstructural change during creep (TS), and thin specimens were water quenched from the melt (WQ) to simulate microstructures of the as-reflowed solders in flip chips. Cooling rates of the WQ specimens were 140∼150 K/sec, and the resultant $\beta-Sn$ globule size was 5∼10 times smaller than that of the TS specimens. Subsequent creep tests showed that the minimum strain rate of TS specimens was about $10_2$ times higher than that of the WQ specimens. Fractographic analyses showed that creep rupture of the TS-SnAgCu specimens occurred by the nucleation of voids on the $Ag_3Sn$ Sn or $Cu_6Sn_5$ particles in the matrix, their subsequent growth by the power-law creep, and inter-linkage of microcracks to form macrocracks which led to the fast failure. On the other hand, no creep voids were found in the WQ specimens due to the mode III shear rupture coming from the thin specimens geometry.

  • PDF

Heavy Metal Contents of Marketing Salts and Bay Salts by Heating (시판 소금의 중금속 함량과 천일염의 온도변화에 따른 중금속 함량)

  • 홍광택;이종영;장봉기
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • In order to determine the content of heavy metal in common salts, 35 bay salt samples, 7 refined salt samples, 7 fine salt samples, 5 bake salt samples and 5 bamboo bake salt samples were collected from old market in major cities. Heating bay salt 35 samples, it made heating bay salt of $500^{\circ}C$, /TEX>(34 samples), heating bay salt of $1000^{\circ}C$(35 samples). These were analysed for contents of lead(Pb), cadmium(Cd), iron(Fe) and zinc(Zn) by atomic absorption spectrophotometer. The results were as follows : Mean content of lead in bay salts was $0.124{\pm}0.035ppm$ refined salt was $0.130{\pm}0.019ppm$, fine salt was $0.073{\pm}0.036ppm$ bake salt was $0.097{\pm}0.023ppm$, bamboo bake salt was $0.117{\pm}0.020ppm$, heating bay salt was $0.063{\pm} 0.021ppm$ in $500^{\circ}C$, heating bay salt was $0.063{\pm}0.039ppm$ in $1000^{\circ}C$. And bay salt refined salt bamboo bake salt were not significant one another. Mean content of cadmium in bay salts was $0.031{\pm}0.008ppm$ refined salt was $0.032{\pm}0.003ppm$, fine salt was $0.037{\pm}0.005ppm$, bake salt was $0.169{\pm}0.117ppm$ bamboo bake salt was $0.079{\pm}0.052ppm$, heating bay salt of $500^{\circ}C$ was $0.030{\pm}0.029ppm$ heating bay salt of $1000^{\circ}C$ was $0.017{\pm}0.013ppm$. And bay salt refined salt, fine salt were not significant one another. Mean content of iron in bay salts was $1.025{\pm}0, 634ppm$, refined salt was $0.359{\pm}0.163ppm$ fine salt was $0.267{\pm}0.068ppm$, bake salt was $2.929{\pm}1.963ppm$, bamboo bake salt was $5.378{\pm}3.676ppm$, heating bay salt of $500^{\circ}C$ was $0.847{\pm}0.315ppm$ heating bay salt of $1000^{\circ}C$ was $0.991{\pm}0.868ppm$. And bay salt refined salt, fine salt, bake salt, bamboo bake salt were significant one another(p<0, 01). Mean content of zinc in bay salts was $0.253{\pm}0.154ppm$, refined salt was $0.263{\pm}0.091ppm$ fine salt was $0.187{\pm}0.015ppm$, bake salt was $0.166{\pm}0.034ppm$, bamboo bake salt was $0.282{\pm}0.064ppm$, heating bay salt of $500^{\circ}C$ was $0.253{\pm}0.085ppm$, heating bay salt of $1000^{\circ} C$ was $0.242{\pm}0.179ppm$. And bay salt refined salt fine salt, bake salt, bamboo bake salt were not significant one another.

  • PDF