• Title/Summary/Keyword: layered medium

Search Result 136, Processing Time 0.024 seconds

Analysis of Ultrasonic Resonance Signal for Detecting the Defect of Adhesive Interface in Exit Cone (확대부 내열재의 접착계면 결함 검출을 위한 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon;Lim, Soo-Yong;Park, Sung-Han;Yeh, Byung-Hahn
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.230-237
    • /
    • 2012
  • The ultrasonic resonance method was applied to detect the disbond interface and empty layer between steel and FRP of the exit cone. The ultrasonic resonance method can easily detect the disbond interface and empty layer by amplifying the ultrasonic signal, but pulse echo method is difficult to distinguish adhesive interface from disbond interface or empty layer. The resonance frequency was predicted using the pressure reflection coefficient of 3-layered medium, and measured from ultrasonic signal of the test block using Fast Fourier Transform. The ultrasonic resonance proved that the predicted resonance frequency was in good agreement with the measured resonance frequency.

  • PDF

Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics

  • Rao, Rajanikant;Sasmal, Saptarshi
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.341-359
    • /
    • 2019
  • Non-monolithic concrete structural connections are commonly used both in new constructions and retrofitted structures where anchors are used for connections. Often, flaws are present in anchor system due to poor workmanship and deterioration; and methods available to check the quality of the composite system afterward are very limited. In case of presence of flaw, load transfer mechanism inside the anchor system is severely disturbed, and the load carrying capacity drops drastically. This raises the question of safety of the entire structural system. The present study proposes a wave propagation technique to assess the integrity of the anchor system. A chemical anchor (embedded in concrete) composite system comprising of three materials viz., steel (anchor), polymer (adhesive) and concrete (base) is considered for carrying out the wave propagation studies. Piezoelectric transducers (PZTs) affixed to the anchor head is used for actuation and the PZTs affixed to the surrounding concrete surface of the concrete-anchor system are used for sensing the propagated wave through the anchor interface to concrete. Experimentally validated finite element model is used to investigate three types of composite chemical anchor systems. Studies on the influence of geometry, material properties of the medium and their distribution, and the flaw types on the wave signals are carried out. Temporal energy of through time domain differentiation is found as a promising technique for identifying the flaws in the multi-layered composite system. The present study shows a unique procedure for monitoring of inaccessible but crucial locations of structures by using wave signals without baseline information.

Transparent Black Phosphorus Nanosheet Film for Photoelectrochemical Water Oxidation

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.217-222
    • /
    • 2021
  • Although monolayer black phosphorus (BP) and few-layer BP nanosheets (NSs) have been extensively studied as promising alternatives to graphene, research has focused primarily on atomically thin-layered BP in an isolated form. In order to realize the practical applications of BP-related devices, a BP film based on continuous networking of few-layer BP NSs should be developed. In this study, a transparent BP film with high quality was fabricated via a vacuum filtration method. An oxygen-free water solvent was used as an exfoliation medium to avoid significant oxidation of the few-layer BP NSs in liquid-phase exfoliation. The exfoliation efficiency from bulk BP to the few-layer BP NSs was estimated at 22%, which is highly efficient for the production of continuous BP film. The characteristics of the high-quality BP film were determined as 98% transparency, minimum oxidation of 18%, structural stability, and an appropriate bandgap of about 1.8 eV as a semiconductor layer. In order to demonstrate the potential of the BP film for photocatalytic activity, we performed photoelectrochemical water oxidation of the transparent BP film. Although its performance should be improved for practical applications, the BP film could function as a photoanode, which offers a new potential semiconductor in water oxidation. We believe that if the BP film is adequately engineered with other catalysts the photocatalytic activity of the BP film will be improved.

Research on Application of SIR-based Prediction Model According to the Progress of COVID-19 (코로나-19 진행에 따른 SIR 기반 예측모형적용 연구)

  • Hoon Kim;Sang Sup Cho;Dong Woo Chae
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Predicting the spread of COVID-19 remains a challenge due to the complexity of the disease and its evolving nature. This study presents an integrated approach using the classic SIR model for infectious diseases, enhanced by the chemical master equation (CME). We employ a Monte Carlo method (SSA) to solve the model, revealing unique aspects of the SARS-CoV-2 virus transmission. The study, a first of its kind in Korea, adopts a step-by-step and complementary approach to model prediction. It starts by analyzing the epidemic's trajectory at local government levels using both basic and stochastic SIR models. These models capture the impact of public health policies on the epidemic's dynamics. Further, the study extends its scope from a single-infected individual model to a more comprehensive model that accounts for multiple infections using the jump SIR prediction model. The practical application of this approach involves applying these layered and complementary SIR models to forecast the course of the COVID-19 epidemic in small to medium-sized local governments, particularly in Gangnam-gu, Seoul. The results from these models are then compared and analyzed.

Manufacture and Performance Evaluation of Medium-density Fiberboard Made with Coffee Bean Residue-Wood Fiber (커피박과 목섬유를 이용한 중밀도섬유판의 제조 및 성능 평가)

  • Yang, In;Lee, Kwang-Hyung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.293-301
    • /
    • 2013
  • This study discusses the feasibility of coffee bean residue as a raw material of medium-density fiberboard (MDF). In this relation, the effect of coffee bean residue known as an absorbent material on the physical and mechanical properties of MDF manufactured at its different addition level. Coffee bean residue which is a by-product of coffee mill and large amount of waste left over after processing for instant coffee was added at the level of 3, 6, and 9% on dry basis and urea formaldehyde resin was used as the adhesive. The MDF made with mixture of wood fiber and coffee bean residue was tested for physical and mechanical properties as well as formaldehyde emission. The bending strength and internal bonding strength of the MDF made with mixture of wood fiber-coffee bean residue were higher than that of the KS standard in randomized mat structure type, but not in layered mat structure type. Also, the physical properties of MDF made with mixture of wood fiber-coffee bean residue showed a considerable improvement in thickness swelling over the commercial MDF. More importantly, the formaldehyde emission rate of MDF made with mixture of wood fiber-coffee bean residue met the KS standard and was close to that of commercial MDF. These results showed the feasibility of coffee bean residue as a raw material for the production of environmentally-friendly MDF. Additional works on adhesive-coffee bean compatibility, improvement of moisture absorption effect and reduction the formaldehyde emission rate by carbonization of coffee bean residue may be required.

A Nuclide Transport Model in the Fractured Rock Medium Using a Continuous Time Markov Process (연속시간 마코프 프로세스를 이용한 균열암반매질에서의 핵종이동 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.529-538
    • /
    • 1993
  • A stochastic way using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock matrix as an extended study for previous work [1]. A nuclide migration model by the continuous time Markov process for single planar fractured rock matrix, which is considered as a transient system where a process by which the nuclide is diffused into the rock matrix from the fracture may be no more time homogeneous, is compared with a conventional deterministic analytical solution. The primary desired quantities from a stochastic model are the expected values and variance of the state variables as a function of time. The time-dependent probability distributions of nuclides are presented for each discretized compartment of the medium given intensities of transition. Since this model is discrete in medium space, parameters which affect nuclide transport could be easily incorporated for such heterogeneous media as the fractured rock matrix and the layered porous media. Even though the model developed in this study was shown to be sensitive to the number of discretized compartment showing numerical dispersion as the number of compartments are decreased, with small compensating of dispersion coefficient, the model agrees well to analytical solution.

  • PDF

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

Evaluation of high power ultrasonic energy transmission characteristics of a liquid matching layer by using sonoluminescence (소노루미네센스를 이용한 액체정합층의 고출력 초음파에너지 전달특성 평가)

  • Kim, Jungsoon;Kim, Haeun;Son, Jinyoung;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.408-416
    • /
    • 2021
  • In the ultrasonic dispersion, in order to avoid direct contact of the radiation surface of ultrasonic transducers with a liquid sample, the liquid sample is separated by a glass container and it receives ultrasonic energy through an acoustic medium. The transmission efficiency of the ultrasonic energy in the multi-layered ultrasonic system is an important factor. In this study, we suggested a method that can improve the ultrasonic energy transfer efficiency by using a propylene glycol solution as a liquid matching layer in the multi-layered acoustic system. In this method, a propylene glycol solution was filled between the Langevin-type ultrasonic transducer and the luminol solution and the sonoluminescence phenomena in the luminol solution, which is caused by nonlinear effect of high power ultrasound radiated from the transducer, was examined by using a Photo Multiplier Tube (PMT). The transmission efficiency depending on the concentration of propylene glycol solution was observed, and we can see that as the concentration of the propylene glycol solution increased, the matching effect increased while the acoustic attenuation increased. It was confirmed that there is an optimal concentration compromised these two conflicting conditions, and the optimum concentration of the propylene glycol solution was determined experimentally.

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

Conservation Scheme and Deterioration States of the Wanggung-ri Five-storied Stone Pagoda in the Iksan, Korea (익산 왕궁리 5층 석탑의 훼손현황과 보존방안 연구)

  • Yang, Hee-Jae;Lee, Chan-Hee;Kim, Sa-Dug;Choi, Seok-Won
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.171-195
    • /
    • 2004
  • This research presents an evaluation of the weathering and deterioration state of the Wanggung-ri five-storied stone pagoda in the Iksan (National Treasure No. 289) and suggests conservational schemes. A deterioration map of the pagoda was drawn from the aspects of petrological, physical, chemical, biological, structural and artificial weathering.The rock properties consisting of the pagoda were medium-grained biotite granite that had leucocratic phenocryst developed in parts. The body of each story suffered severely from the secondary contamination that turned the colors into light grey, pitch dark, yellowish brown, and reddish brown as well as granular decomposition, exfoliation and peel-off. The roof stones were heavy exfoliated or peeled off in most of the cases. In addition to the fine cracks, there were layered cracks on the corners. The roof stones of the3rd and 4th story in the north and west side had some stones fall-off, while those of the 2ndstory in the north side had steel reinforcement filled for a fixing purpose. Those of the 5th story showed big gaps that must have originated from cracks and were easily subject to granular decomposition and rainfall. The inside clay filler was missing in the lower part of the roof stones of the 4th and 5th story and the supporting stones, which were thus covered by light grey or pitch dark sediments. The contact area of the materials was about 70 % in the parts where there was a space due to the filler missing and washigher than 90 % in the lower parts of the pagoda. About 90 % or more of the roof stones surface of each story were covered by aerial plants that formed a thick biological mat. Thus it seemed necessary to come up with the conservational measures to remove the plans living on the surface of the stone materials, with the plans to prevent rain from falling inside, and with the water repellent and hardening treatments to postpone the surface weathering of the rock properties. All those measures and plans must be based on the results of long-term monitoring and thorough detail investigations.

  • PDF