• 제목/요약/키워드: layer thickness

검색결과 5,171건 처리시간 0.039초

터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구 (Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade)

  • 전용민;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism)

  • 지호성;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

Ultrasonic Measurement of Interfacial Layer Thickness of Sub-Quarter-Wavelength

  • Kim, No-Hyu;Lee, Sang-Soon
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.577-582
    • /
    • 2003
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave used in the ultrasonic pulse-echo measurements. The technique determines the thickness of a thin layer in a tapered medium from constructive interference of multiple reflection waves. The interference characteristics are derived and investigated in theoretical and experimental approaches. Modified total reflection wave g(t) defined as difference between total and first reflection waves increases in amplitude as the interfacial layer thickness decreases down to zero. A layer thickness less than one-tenth of the ultrasonic wavelength is measured using the maximum amplitude of g(t) with a good accuracy and sensitivity. The method also requires no inversion process to extract the thickness information from the waveforms of reflected waves, so that it makes possible to have the on-line thickness measurement of a thin layer such as a lubricating oil film in thrust bearings and journal bearings during manufacturing process.

평면 초음파를 이용한 미소 간극 측정 (Thickness Measurement of A Thin Layer Using Plane Ultrasonic waves)

  • 김노유
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.415-418
    • /
    • 1995
  • This paper describes a new technique for thickness measurement of a very thin layer less than one-quarter of the wavelength of ultrasonic wave using ultrasonic pulse-echo method. The technique determines the thickness of a thin layer in a layered medium form the amplitudes of the total reflected waves from the back side layer of interst. Thickness of a very thin layer few inch deep inside the media can be measured without using a very high frequency ultrasonic transducer over 100MHz which must be used in the conventional techniques for the precision measurement of a thin layer. The method also requires no inversion process to extract the thickness from the waveform of the reflected waves, so that it makes possible on-line measurement of the thickness of the layer.

  • PDF

스크린 인쇄 기법에 의해 제작된 분산형 무기 EL 램프의 형광층 및 유전층의 두께 변화 (The Thickness Change of the Phosphor Ink Layer and the Dielectric Ink Layer of a Inorganic Powder EL Lamp That was produced by Screen Printing Technique)

  • 문길환;강영립
    • 한국인쇄학회지
    • /
    • 제29권2호
    • /
    • pp.83-92
    • /
    • 2011
  • A inorganic powder EL lamp was made by screen printing technique with phosphor ink and dielectric ink. The thickness change of a phosphor ink layer and a dielectric ink layer were not influenced on dielectric content, but rely on phosphor size and vehicle. Once finishing screen printing technique with phosphor ink and dielectric ink, and its surface has been printed again before not drying of phosphor ink and dielectric ink. Then phosphor ink and dielectric ink were not transferred. The electric capacity of inorganic powder EL lamp was more influenced on dielectric content than the thickness of dielectric ink layer, and it was more dependent on the thickness of phosphor ink layer than the thickness of dielectric ink layer.

전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성 (Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes)

  • 안희철;주현우;나수환;김태완;홍진웅;오용철;송민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF

광조형 시스템의 리코팅 공정 개선 (Improvement for Recoating Process of Stereolithography System)

  • 이은덕;심재형;안규환;백인환
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.16-23
    • /
    • 2003
  • Keeping the layer thickness constant is very essential for improving the shape accuracy in the stereolithography process. The layer thickness is created by recoating process, and also affected by recoating parameters such as blade speed and thickness. The created layer in this process can determine the whole accuracy of the entire parts. The aim of this paper is to improve the accuracy of the layer thickness by adjusting the recoating process parameters. Several experiments with different recoating conditions are Performed to find the optimal recoating parameters that produce the most accurate layer thickness. The effective recoating method is suggested by measuring and analyzing the cured layer thickness.

입구경계층 두께와 경계층 펜스가 터빈 캐스케이드내 열전달 특서에 미치는 영향 (Effects of the Inlet Boundary Layer Thickness and the Boundary Layer Fence on the Heat Transfer Chracteristics in a Turbine Cascade)

  • 정지선;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.765-770
    • /
    • 2001
  • The objective of the present study is to investigate the effects of the various inlet boundary layer thickness on convective heat transfer distribution in a turbine cascade endwall and blade suction surface. In addition, the proper height of the boundary layer fences for various inlet boundary layer thickness were applied to turbine cascade endwall in order to reduce the secondary flow, and to verify its influence on the heat transfer process within the turbine cascade. Convective heat transfer distributions on the experimental regions were measured by the image processing system. The results show that heat transfer coefficients on the blade suction surface were increased with an augmentation of inlet boundary layer thickness. However, in a turbine cascade endwall, magnitude of heat transfer coefficients did not change with variation of inlet boundary layer thickness. The results also present that the boundary layer fence is effective in reducing heat transfer on the suction surface. On the other hand, in the endwall region, boundary layer fence brought about the subsidiary heat transfer increment.

  • PDF

Power density of various light curing units through resin inlays with modified layer thickness

  • Hong, Sung-Ok;Oh, Yong-Hui;Min, Jeong-Bum;Kim, Jin-Woo;Lee, Bin-Na;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann;Chang, Hoon-Sang
    • Restorative Dentistry and Endodontics
    • /
    • 제37권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Objectives: The purpose of this study was to enhance curing light penetration through resin inlays by modifying the thicknesses of the dentin, enamel, and translucent layers. Materials and Methods: To investigate the layer dominantly affecting the power density of light curing units, resin wafers of each layer with 0.5 mm thickness were prepared and power density through resin wafers was measured with a dental radiometer (Cure Rite, Kerr). The dentin layer, which had the dominant effect on power density reduction, was decreased in thickness from 0.5 to 0.1 mm while thickness of the enamel layer was kept unchanged at 0.5 mm and thickness of the translucent layer was increased from 0.5 to 0.9 mm and vice versa, in order to maintain the total thickness of 1.5 mm of the resin inlay. Power density of various light curing units through resin inlays was measured. Results: Power density measured through 0.5 mm resin wafers decreased more significantly with the dentin layer than with the enamel and translucent layers (p < 0.05). Power density through 1.5 mm resin inlays increased when the dentin layer thickness was reduced and the enamel or translucent layer thickness was increased. The highest power density was recorded with dentin layer thickness of 0.1 mm and increased translucent layer thickness in all light curing units. Conclusions: To enhance the power density through resin inlays, reducing the dentin layer thickness and increasing the translucent layer thickness would be recommendable when fabricating resin inlays.

유기발광소자의 막두께 및 음극전극의 변호에 따른 발광특성 (EL Properties of the Organic Light-Emitting-Diode with various Thickness and Cathode Electrode)

  • 김형권;이덕출
    • 한국전기전자재료학회논문지
    • /
    • 제11권10호
    • /
    • pp.897-902
    • /
    • 1998
  • We prepared Organic LED with a two layer structure by vacuum evaporation. The diode consisted of hole transfer layer (thickness of 30, 50, 70 nm) and electron transfer layer (thickness of 70, 50, 30 nm) material, which was N, N'-diphenyl- N, N'-bis-(3-methyl phenyl)-1,1'-diphenyl-4,4'-diamine)(TPD) and tris(8-hydroxy quinoline) aluminum(Alq3), respectively. We investigated EL properties of the LED with various thickness and cathode electrode. The best results were obtained when thickness of the electron layer is equal to that of emission layer and when AlLi alloy was used as a cathode. The EL intensity, luminance and efficiency of organic LED with equal of layer thick were improved seven, three and two times, respectively. Alq3 was ionized by carrier injection from cathode and could produce exitons. After electron-hole pairs were formed by combination of the electrons and holes at the emission layer, Alq3 layer emitted light.

  • PDF