DC Resistivity method to image the underground structure beneath river or lake bottom (하저 지반특성 규명을 위한 전기비저항 탐사)
-
- 한국지구물리탐사학회:학술대회논문집
- /
- 2002.09a
- /
- pp.139-162
- /
- 2002
Since weak zones or geological lineaments are likely to be eroded, weak zones may develop beneath rivers, and a careful evaluation of ground condition is important to construct structures passing through a river. Dc resistivity surveys, however, have seldomly applied to the investigation of water-covered area, possibly because of difficulties in data aquisition and interpretation. The data aquisition having high quality may be the most important factor, and is more difficult than that in land survey, due to the water layer overlying the underground structure to be imaged. Through the numerical modeling and the analysis of case histories, we studied the method of resistivity survey at the water-covered area, starting from the characteristics of measured data, via data acquisition method, to the interpretation method. We unfolded our discussion according to the installed locations of electrodes, ie., floating them on the water surface, and installing at the water bottom, since the methods of data acquisition and interpretation vary depending on the electrode location. Through this study, we could confirm that the dc resistivity method can provide the fairly reasonable subsurface images. It was also shown that installing electrodes at the water bottom can give the subsurface image with much higher resolution than floating them on the water surface. Since the data acquired at the water-covered area have much lower sensitivity to the underground structure than those at the land, and can be contaminated by the higher noise, such as streaming potential, it would be very important to select the acquisition method and electrode array being able to provide the higher signal-to-noise ratio data as well as the high resolving power. The method installing electrodes at the water bottom is suitable to the detailed survey because of much higher resolving power, whereas the method floating them, especially streamer dc resistivity survey, is to the reconnaissance survey owing of very high speed of field work.
In this research, literature research on the Odong material, mixture ratio, casting method and casting facility was conducted on contemporary documents, such as Cheongong Geamul. Also, a long sword was produced using the Odong inlay technique. The sword reproduction steps were as follows; Odong alloying, silver soldering alloying, Odong plate and Silver plate production, hilt and sheath production, metal frame and decorative elements, such as a Dugup (metal frame), production, Odong inlay assembly and final assembly. For the Odong alloy production, the mixture ratio of the true Odong, which has copper and gold ratio of 20:1, was used. This is traditional ratio for high quality product according to
The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with
This study dealt with the comparison of the individual lipid component and fatty acid composition in the six varieties of dent corn, Zea mays Indentata. The fatty acid and sterol compositions of the total lipid were analyzed by gas liquid chromatography. The total lipid was also fractionated into three lipid classes namely neutral, glyco and phospolipid by the methods of silicic acid column chromatography. The lipid componets of lipid-classes were estimated by thin layer chromatography and TLC-scanner. The contents of total lipid in six varieties of Cdent corn were
The Album of Complete Views of Seas and Mountains comprises sixty real scenery landscape paintings depicting Geumgangsan Mountain, the Haegeumgang River, and the eight scenic views of Gwandong regions, as well as fifty-one pieces of writing. It is a rare example in terms of its size and painting style. The paintings in this album, which are densely packed with natural features, follow the painting style of the Southern School yet employ crude and unconventional elements. In them, stones on the mountains are depicted both geometrically and three-dimensionally. Since 1973, parts of this album have been published in some exhibition catalogues. The entire album was opened to the public at the special exhibition "Through the Eyes of Joseon Painters: Real Scenery Landscapes of Korea" held at the National Museum of Korea in 2019. The Album of Complete Views of Seas and Mountains was attributed to Kim Eung-hwan (1742-1789) due to the signature on the final leaf of the album and the seal reading "Bokheon(painter's penname)" on the currently missing album leaf of Chilbodae Peaks. However, there is a strong possibility that this signature and seal may have been added later. This paper intends to reexamine the creator of this album based on a variety of related factors. In order to understand the production background of Album of Complete Views of Seas and Mountains, I investigated the eighteenth-century tradition of drawing scenic spots while travelling in which scenery of was depicted during private travels or official excursions. Jeong Seon(1676-1759), Sim Sa-jeong(1707-1769), Kim Yun-gyeom(1711-1775), Choe Buk(1712-after 1786), and Kang Se-hwang(1713-1791) all went on a journey to Geumgangsan Mountain, the most famous travel destination in the late Joseon period, and created paintings of the mountain, including Album of Pungak Mountain in the Sinmyo Year(1711) by Jeong Seon. These painters presented their versions of the traditional scenic spots of Inner Geumgangsan and newly depicted vistas they discovered for themselves. To commemorate their private visits, they produced paintings for their fellow travelers or sponsors in an album format that could include several scenes. While the production of paintings of private travels to Geumgangsan Mountain increased, King Jeongjo(r. 1776-1800) ordered Kim Eung-hwan and Kim Hong-do, court painters at the Dohwaseo(Royal Bureau of Painting), to paint scenic spots in the nine counties of the Yeongdong region and around Geumgangsan Mountain. King Jeongjo selected these two as the painters for the official excursion taking into account their relationship, their administrative experience as regional officials, and their distinct painting styles. Starting in the reign of King Yeongjo(r. 1724-1776), Kim Eung-hwan and Kim Hong-do served as court painters at the Dohwaseo, maintained a close relationship as a senior and a junior and as colleagues, and served as chalbang(chief in large of post stations) in the Yeongnam region. While Kim Hong-do was proficient at applying soft and delicate brushstrokes, Kim Eung-hwan was skilled at depicting the beauty of robust and luxuriant landscapes. Both painters produced about 100 scenes of original drawings over fifty days of the official excursion. Based on these original drawings, they created around seventy album leaves or handscrolls. Their paintings enriched the tradition of depicting scenic spots, particularly Outer Inner Geumgang and the eight scenic views of Gwandong around Geumgangsan Mountain during private journeys in the eighteenth century. Moreover, they newly discovered places of scenic beauty in the Outer Geungang and Yeongdong regions, establishing them as new painting themes. The Album of Complete Views of Seas and Mountains consists of four volumes. The volumes I, II include twenty-nine paintings of Inner Geumgangsan; the volume III, seventeen scenes of Outer Geumgangsan; and the volume IV, fourteen images of Maritime Geumgangsan and the eight scenic views of Gwandong. These paintings produced on silk show crowded compositions, geometrical depictions of the stones and the mountains, and distinct presentation of the rocky peaks of Geumgangsan Mountain using white and grayish-blue pigments. This album reflects the Joseon painting style of the mid- and late eighteenth century, integrating influences from Jeong Seon, Kang Se-hwang, Sim Sa-jeong, Jeong Chung-yeop(1725-after 1800), and Kim Hong-do. In particular, some paintings in the album show similarities to Kim Hong-do's Album of Famous Mountains in Korea in terms of its compositions and painterly motifs. However, "Yeongrangho Lake," "Haesanjeong Pavilion," and "Wolsongjeong Pavilion" in Kim Eung-hwan's album differ from in the version by Kim Hong-do. Thus, Kim Eung-hwan was influenced by Kim Hong-do, but produced his own distinctive album. The Album of Complete Views of Seas and Mountains includes scenery of "Jaundam Pool," "Baegundae Peak," "Viewing Birobong Peak at Anmunjeom groove," and "Baekjeongbong Peak," all of which are not depicted in other albums. In his version, Kim Eung-hwan portrayed the characteristics of the natural features in each scenic spot in a detailed and refreshing manner. Moreover, he illustrated stones on the mountains using geometric shapes and added a sense of three-dimensionality using lines and planes. Based on the painting traditions of the Southern School, he established his own characteristics. He also turned natural features into triangular or rectangular chunks. All sixty paintings in this album appear rough and unconventional, but maintain their internal consistency. Each of the fifty-one writings included in the Album of Complete Views of Seas and Mountains is followed by a painting of a scenic spot. It explains the depicted landscape, thus helping viewers to understand and appreciate the painting. Intimately linked to each painting, the related text notes information on traveling from one scenic spot to the next, the origins of the place names, geographic features, and other related information. Such encyclopedic documentation began in the early nineteenth century and was common in painting albums of Geumgangsan Mountain in the mid- nineteenth century. The text following the painting of Baekhwaam Hermitage in the Album of Complete Views of Seas and Mountains documents the reconstruction of the Baekhwaam Hermitage in 1845, which provides crucial evidence for dating the text. Therefore, the owner of the Album of Complete Views of Seas and Mountains might have written the texts or asked someone else to transcribe them in the mid- or late nineteenth century. In this paper, I have inferred the producer of the Album of Complete Views of Seas and Mountains to be Kim Eung-hwan based on the painting style and the tradition of drawing scenic spots during official trips. Moreover, its affinity with the Handscroll of Pungak Mountain created by Kim Ha-jong(1793-after 1878) after 1865 is another decisive factor in attributing the album to Kim Eung-hwan. In contrast to the Album of Famous Mountains in Korea by Kim Hong-do, the Album of Complete Views of Seas and Mountains exerted only a minor influence on other painters. The Handscroll of Pungak Mountain by Kim Ha-jong is the sole example that employs the subject matter from the Album of Complete Views of Seas and Mountains and follows its painting style. In the Handscroll of Pungak Mountain, Kim Ha-jong demonstrated a painting style completely different from that in the Album of Seas and Mountains that he produced fifty years prior in 1816 for Yi Gwang-mun, the magistrate of Chuncheon. He emphasized the idea of "scholar thoughts" by following the compositions, painterly elements, and depictions of figures in the painting manual style from Kim Eung-hwan's Album of Complete Views of Seas and Mountains. Kim Ha-jong, a member of the Gaeseong Kim clan and the eldest grandson of Kim Eung-hwan, is presumed to have appreciated the paintings depicted in the nature of Album of Complete Views of Seas and Mountains, which had been passed down within the family, and newly transformed them. Furthermore, the contents and narrative styles of Yi Yu-won's writings attached to the paintings in the Handscroll of Pungak Mountain are similar to those of the fifty-one writings in Kim Eunghwan's album. This suggests a possible influence of the inscriptions in Kim Eung-hwan's album or the original texts from which these inscriptions were quoted upon the writings in Kim Ha-jong's handscroll. However, a closer examination will be needed to determine the order of the transcription of the writings. The Album of Complete View of Seas and Mountains differs from Kim Hong-do's paintings of his official trips and other painting albums he influenced. This album is a siginificant artwork in that it broadens the understanding of the art world of Kim Eung-hwan and illustrates another layer of real scenery landscape paintings in the late eighteenth century.
According to Soil Taxonomy which has been developed over the past 20 years in the soil conservation service of the U. S. D. A, Soils in Korea are classified. This system is well suited for the classification of the most of soils. But paddy field soils have some difficulties in classification because Soil Taxonomy states no proposals have yet been developed for classifying artificially irrigated soils. This paper discusses some problems in the application of Taxonomy and suggestes the classification of paddy field soils in Korea. Following is the summary of the paper. 1. Anthro aquic, Aquic Udipsamments : The top soils of these soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) more than 50cm of the soil surface. (Ex. Sadu, Geumcheon series) 2. Anthroaquic Udipsamments : These sails are like Anthroaquic, Aquic Udipsamments except for the mottles of low chroma within 50cm of the soil surface. (Ex. Baegsu series) 3. Halic Psammaquents : These soils contain enough salts as distributed in the profile that they interfere with the growth of most crop plants and located on the coastal dunes. The water table fluctuates with the tides. (Ex. Nagcheon series) 4. Anthroaquic, Aquic Udifluvents : They have some mottles that have chroma of 2 or less in more than 50cm of the surface. The upper horizon is saturated with irrigated water at sometime. (Ex. Maryeong series) 5. Anthro aquic Udifluvents : These soils are saturated with irrigated water at some time of year and have mottles of low chroma(2 or less) within 50cm of the surface soils. (Ex. Haenggog series) 6. Fluventic Haplaquepts : These soils have a content of organic carbon that decreases irregularly with depth and do not have an argillic horizon in any part of the pedon. Since ground water occur on the surface or near the surface, they are dominantly gray soils in a thick mineral regolith. (Ex Baeggu, Hagseong series) 7. Fluventic Thapto-Histic Haplaquepts : These soils have a buried organic matter layer and the upper boundary is within 1m of the surface. Other properties are same as Fluventic Haplaquepts. (Ex. Gongdeog, Seotan series) 8. Fluventic Aeric Haplaquepts : These soils have a horizon that has chroma too high for Fluventic Haplaquepts. The higher chroma is thought to indicate either a shorter period of saturation of the whole soils with water or some what deeper ground water than in the Fluventic Haplaquepts. The correlation of color with soil drainage classes is imperfect. (Ex. Mangyeong, Jeonbug series) 9. Fluventic Thapto-Histic Aeric Haplaquepts : These soils are similar to Fluventic Thapto Histic Haplaquepts except for the deeper ground water. (Ex. Bongnam series) 10. Fluventic Aeric Sulfic Haplaquepts : These soils are similar to Fluventic Aeric Haplaquepts except for the yellow mottles and low pH (<4.0) in some part between 50 and 150cm of the surface. (Ex. Deunggu series) 11. Fluventic Sulfaquepts : These soils are extremely acid and toxic to most plant. Their horizons are mostly dark gray and have yellow mottles of iron sulfate with in 50cm of the soil surface. They occur mainly in coastal marshes near the mouth of rivers. (Ex. Bongrim, Haecheog series) 12. Fluventic Aeric Sulfaquepts : They have a horizon that has chroma too high for Fluventic Sulfaquepts. Other properties are same as Fluventic Sulfaquepts. (Ex. Gimhae series) 13. Anthroaquic Fluvaquentic Eutrochrepts : These soils have mottles of low chroma in more than 50cm of the surface due to irrigated water. The base saturation is 60 percent or more in some subhroizon that is between depth of 25 and 75cm below the surface. (Ex. Jangyu, Chilgog series) 14. Anthroaquic Dystric Fluventic Eutrochrepts : These soils are similar to Anthroaquic Fluvaquentic Eutrochrepts except for the low chroma within 50cm of the surface. (Ex. Weolgog, Gyeongsan series) 15. Anthroaquic Fluventic Dystrochrepts : These soils have mottles that have chroma of 2 or less within 50cm of the soil surface due to artificial irrigation. They have lower base saturation (<60 percert) in all subhorizons between depths of 25 and 75cm below the soil surface. (Ex. Gocheon, Bigog series) 16. Anthro aquic Eutrandepts : These soils are similar to Anthroaquic Dystric Fluventic Eutrochrepts except for lower bulk density in the horizon. (Ex. Daejeong series) 17. Anthroaquic Hapludalfs : These soils' have a surface that is saturated with irrigated water at some time and have chroma of 2 or less in the matrix and higher chroma of mottles within 50cm of the surface. (Ex. Hwadong, Yongsu series) 18. Anthro aquic, Aquic Hapludalfs : These soils are similar to Anthro aquic Hapludalfs except for the matrix that has chroma 2 or less and higher chroma of mottles in more than 50cm of the surface. (Ex. Geugrag, Deogpyeong se ries)
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) =