• Title/Summary/Keyword: launching

Search Result 759, Processing Time 0.022 seconds

The Effects of a Launching Nose on Main Girder Erected by Incremental Launching Method (압출공법에 의한 가설시 추진코가 주형에 미치는 영향)

  • Oh, Kwi Hwan;Kim, Chul Young;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 1992
  • Since the structural system of a prestressed concrete bridge erected by Incremental Launching Method is varying continuosly during construction, the main girder bears alternating stress resultants different from those under a service load condition. The magnitude of these stress resultants depends on span lengths, nose length and stiffness ratios between girder and nose. A parametric study is performed for various span lengths, nose lengths and stiffness ratios. In order to analyze structural systems varying at every launching step two programs are developed; a pre-processor which automatically produces a data file for each stage and a main-processor which can summarize the results of all stages. From the results, the relationships between optimum nose length and stiffness ratio are proposed for various span lengths.

  • PDF

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

A System Design of the MIRINAE II, Air-Launching Rocket for Nanosat (극소형 위성발사를 위한 공중발사 로켓 미리내II의 시스템 설계)

  • Lee, Y.J.;Kim, J.H.;Choi, Y.C.;Lee, J.W.;Byun, Y.H.;Lee, C.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.83-91
    • /
    • 2005
  • Air-Launching is an effective method that can launch the 'Nanosat' with low launching cost. In this study, system and subsystem design of the air launching rocket for nanosats which perform a simple mission, have been performed. For this purpose, the WBS of the MIRINAEⅡ, and the subsystem schematics have been defined first. Based on these results, detailed configuration and DMU have been developed.

Measurement during Construction of Nakdong Bridge by Incremental Launching Method (낙동강교 ILM 가설에 따른 시공 중 계측)

  • Kim, Hyung-Tae;Cho, Nam-So;Jung, Ji-Man;Yang, Sung-Man
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.575-580
    • /
    • 2007
  • As the volume of traffic in southern part of the republic of Korea grew, expansion of transportation was required. In that purpose, the railway between Samnangjin and Gwangyang is being extended to a double-track line. This construction includes Nakdong bridge located across Nakdong river. This truss bridge is constructed in incremental launching method (ILM) and composed of two sections, straight line and curved one. Bridge construction in the method goes with the shift of roller supports which results in the change of structural system. To accomplish safe construction, the measurement during the whole launching stages. The locations of member in severe condition and the corresponding response values were estimated through the preliminary construction stage analysis. Based on the analysis, the measurement during construction was planned. Several sensors and measurement devices were installed at appropriate locations. During the whole launching stages, the measurement was performed and the corresponding data were monitored and stored in real time. The comparison of the responses from the analysis and the measurement showed no indication of yielding of the structural members. Consequently, the construction of Nakdong bridge was concluded to be relevant.

  • PDF

Bit Error Rate Dependence on Amplifier Spacing in Long-Haul Optical Transmission System with Mid-Span Spectral Inversion (Mid-Span Spectral Inversion 기법을 채택한 장거리 광 전송 시스템에서의 증폭기 간격에 따른 비트 에러율)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2005
  • In this paper, bit error rate (BER) characteristics, sensitivity and minimum allowable launching power are numerically investigated as a function of amplifier spacing that consisted of 1,200 km WDM systems with MSSI method. It is conformed that the sensitivity and minimum allowable launching power are gradually degraded as amplifier spacings are gradually expanded, but those are not largely affected by modulation format. The sensitivity of RZ transmission system is smaller than that of NRZ transmission system, but minimum allowable launching power of NRZ transmission system is smaller than that of RZ transmission system. And, it is confirmed that the best amplifier spacing in NRZ and RZ transmission system is less than 50 km, because the sensitivity and minimum allowable launching power are less affected by fiber dispersion, channel wavelength and pump light power.

  • PDF

A Numerical Study on the Supersonic Separation of Air-launching Rocket from the Mother Plane (초음속 공중발사 로켓의 모선분리 현상에 관한 수치적 연구)

  • Ji, Young-Moo;Kim, Young-Shin;Lee, Jae-Woo;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.18-25
    • /
    • 2005
  • This paper describes a supersonic separation of air-launching rocket from the mother plane. Three dimensional Euler equations were numerically solved to analyze steady/unsteady state fluid flows. The results of simulation clearly demonstrate effect of shock-expansion wave interaction between the rocket and the mother plane. Moreover, important influential factors at separating stage of the rocket were extracted with a comprehensive analysis. Finally, from the consideration of supersonic-separation, a guideline to safety-separation is given to the design of supersonic air-launching rocket.

Numerical Investigation of Mother Plane Interference Effect on the Supersonic Air-launched Rocket (초음속 공중발사 로켓의 모선 간섭현상 수치적 연구)

  • Kim, Young-Shin;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jun-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.17-26
    • /
    • 2005
  • Numerical investigation has been made on the aerodynamic characteristics of supersonic air-launching rocket, as a new concept launching mechanism. Parametric study on the variations of launching velocity, incident angle and mounting location of the rocket has been performed using three dimensional Euler equations. Influential factors at separating stage of the rocket were extracted through comprehensive analyses, and, the response surface models were constructed for those factors. From the study, the aerodynamic behavior of the air-launching rocket at supersonic speed and useful guidelines for the optimal mounting location of the rocket have been obtained.

Numerical Study about Behavior of an Ejecting Projectile for Varying Initial Conditions (초기 조건 변화에 따른 사출 운동체의 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.761-767
    • /
    • 2019
  • In the present study, analyses of initial behavior of an air-launched projectile for varying initial conditions are performed by coupling computational fluid dynamics and 6 degrees of freedom calculations. Accuracy of the present numerical methods is validated by comparing the present result with the measured data. Launching safety analyses are carried out for various ejecting conditions by considering weight of the projectile and magnitude of front and rear ejector forces as the major parameters of initial behavior of the projectile. A response surface of the projectile launching safety is obtained in the range of the major parameters. In all the conditions of zero rear ejector force, unsafe launching behavior is observed. As the weight of the projectile decreases, the initial launching behavior becomes more unsafe.

Evaluation of ECCD power requirement for neoclassical tearing modes suppression in the CFETR hybrid scenario

  • L.H. He;P.W. Zheng ;T. Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2941-2951
    • /
    • 2023
  • The optimal minimum ECCD power is evaluated numerically for completely suppressing the 3/2 and 2/1 NTMs in the CFETR hybrid scenario. For two typical frequencies of ECCD sources launching from two upper launcher (UL) ports, fec = 210 GHz and 240 GHz with O1-mode, UL1: (Ri, Zi) = (8.47, 5.7) m and UL2: (Ri, Zi) = (8.2, 4.5) m, higher frequency of ECCD source launching from the UL2 port is better than that low frequency counterpart from the UL1 port. Using 240 GHz ECCD source launching from the UL2 port, the minimum power required to fully suppress the two NTMs with precise ECCD alignment is 12.4 MW and 16.7 MW, respectively. When good alignment cannot be achieved, the results suggest that the misalignment should not exceed 0.02α, preferably 0.015α, corresponding to 4.4 cm and 3.3 cm. Considering engineering difficulty of high-frequency gyrotron sources, the optimal minimum ECCD power with the 210 GHz source launching from the UL2 port is 17.9 MW and 20.6 MW for completely suppressing the 3/2 and 2/1 NTMs, respectively. In view of this, it is a good choice to select the 210 GHz ECCD source launching from the UL2 port in the short and medium term.

The Effect on Launching Stability Due to the Initial Missile Detent Force (유도탄의 초기 구속력이 발사안정에 미치는 영향)

  • 심우전;임범수;이우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.22-29
    • /
    • 1997
  • This paper presents results on dynamic analysis of the missile initial motion arising from the missile detent force. Using ADAMS (Automatic Dynamic Analysis of Mechanical Syatem) software, a non- linear46-DOF (Degree of Freedom) model is developed for the launcher system including missile and lunch tube contact problem. From the dynamic analysis, it is found that initial angular velocity of the missile incre- ases when the missile detent force increases and also when rocket exhaust plume is taken into account. To achieve the missile launching stability, it needs to reduce the missile initial detent force and exhaust plume area of the lancher. Results of the dynamic analysis on the system natural frequency agree well with those obtained from experimental modal tests. The overall results suggest that the proposed method is a useful tool for prediction of initial missile stability as well as design of the missile launcher system.

  • PDF