• Title/Summary/Keyword: lattice temperature

Search Result 918, Processing Time 0.027 seconds

Transfer Matrix Algorithm for Computing the Geometric Quantities of a Square Lattice Polymer

  • Lee, Julian
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1808-1813
    • /
    • 2018
  • I develop a transfer matrix algorithm for computing the geometric quantities of a square lattice polymer with nearest-neighbor interactions. The radius of gyration, the end-to-end distance, and the monomer-to-end distance were computed as functions of the temperature. The computation time scales as ${\lesssim}1.8^N$ with a chain length N, in contrast to the explicit enumeration where the scaling is ${\sim}2.7^N$. Various techniques for reducing memory requirements are implemented.

A Study on the Characteristics of All-Optic Tunable Filter in various temperature and strain Using Fiber Bragg Grating (FBG를 이용한 온도 및 스트레인의 영향에 따른 전광필터 특성에 관한 연구)

  • Jang Woo-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.17-22
    • /
    • 2005
  • In this study, we suggested wave-variable Bragg lattice using the characteristic of the Bragg wave that varies according to the change of the temperature imposed on the optical fiber lattice device, and experimented using a simulation test. We analyzed the results of the FBG change according to the change of the temperature obtained in the variable FEG computer simulation and experiment to suggest optimal data. Therefore, utilizing wave-variable optical filter through FBG allows us to combine other channels beyond optical fiber lattice device wave, and can be used as a helpful device in the Dense Wavelength Division Multiplexed system with a channel intervention of 0.08nm(10GHz).

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Lattice Thermal Conductivity Calculation of Sb2Te3 using Molecular Dynamics Simulations

  • Jeong, Inki;Yoon, Young-Gui
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1541-1545
    • /
    • 2018
  • We study lattice thermal conductivity of $Sb_2Te_3$ using molecular dynamics simulations. The interatomic potentials are fitted to reproduce total energy and elastic constants, and phonon properties calculated using the potentials are in reasonable agreement with first-principles calculations and experimental data. Our calculated lattice thermal conductivities of $Sb_2Te_3$ decrease with temperature from 150 K to 500 K. The in-plane lattice thermal conductivity of $Sb_2Te_3$ is higher than cross-plane lattice thermal conductivity of $Sb_2Te_3$, as in the case of $Bi_2Te_3$, which is consistent with the anisotropy of the elastic constants.

The Free Energy of Mixing for a Binary Lattice Solution Consisting of Two Identical Interpenetrating Sublattices (두개의 동등한 상호침투 부격자로 구성된 이성분 격자 용액의 혼합자유에너지)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.4
    • /
    • pp.278-283
    • /
    • 2022
  • Using the Kirkwood's method, the free energy of a binary lattice solution consisting of two identical interpenetrating sublattices, such as a simple cubic lattice or a body-centered cubic lattice, was calculated up to the tenth order of the reciprocal of absolute temperature. Using this, liquid-liquid coexistence curves and critical solution temperatures for the binary lattice solutions were calculated to quantitatively investigate the effect of non-random mixing of molecules. And it was shown that the coexistence curve of the simple cubic lattice solution was in good agreement with the Monte-Carlo computer simulation result.

The relation between optical diffraction pattern and domain size in blue phase

  • Lee, Ho-Hyun;Kim, Jong-Hyun;Kikuchi, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.942-944
    • /
    • 2009
  • Blue phase shows several different reflection colors from the randomly oriented domains and crystal direction. Also there are variations in the size of domains. The domain size is dependent on the temperature gradient. With smaller cooling rate of temperature, the domain size was increased compared with rapid cooling. With injection of light of specific wavelength, we find that the diffraction patterns were occurred around the light spot in the cell of blue phase. It was supposed to be from the matching of the phase retardation and domain size. However, actually the diffraction pattern is reflecting the lattice structure in double twist of the blue phase. The lattice constant from the radius of diffraction patterns shows very similar one from the reflection spectrum, which indicates the internal lattice constant in double twist of the blues phase.

  • PDF

Raman Frequencies Calculated at Various Pressures in Phase I of Benzene

  • Tari, Ozlem;Yurtseven, Hamit
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.204-209
    • /
    • 2013
  • We calculate in this study the pressure dependence of the frequencies for the Raman modes of A ($A_g$), B ($A_g$, $B_{2g}$) and C ($B_{1g}$, $B_{3g}$) at constant temperatures of 274 and 294K (room temperature) for the solid phase I of benzene. Using the mode Gr$\ddot{u}$neisen parameter of each lattice mode, which correlates the pressure dependence of the crystal volume and the frequency, the Raman frequencies of those modes are computed for phase I of benzene. Our results show that the Raman frequencies of the three lattice modes (A, B and C) increase as the pressure increases, as expected. The temperature effect on the Raman frequencies is not significant, which can be explained by the experimental measurements.

A Study of Activated Sintering Mechanism of $UO_2$ Powder by High Temperature X-Ray Diffractometry

  • Lee, Byoung-Whie;Suh, Kyung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.132-136
    • /
    • 1972
  • The mechanism for activated sintering of UO$_2$by an addition of 0.05 w/o TiO$_2$was investigated using a high temperature X-ray diffractometer. The diffraction pattern of UO$_2$pellets was studied in a temperature range from room temperature to 120$0^{\circ}C$ in hydrogen atmosphere. At 120$0^{\circ}C$, the expansion of UO$_2$lattice were 1.448% and 1.354% greater when it was compared with those at room temperature for pellets with and without the 0.05 w/o TiO$_2$addition, respectively-The effect of the TiO$_2$addition is to increase the lattice constant of UO$_2$by 0.094% at 120$0^{\circ}C$. The lattice constant at 120$0^{\circ}C$without the TiO$_2$addition is equal to that at 108$0^{\circ}C$ with the 0.05 w/o TiO$_2$addition. This temperature difference could be well compared with the suppression of sintering temperature by TiO$_2$hat had been observed Previously. It is believed that the increase in lattice expansion due to the TiO$_2$addition would give rise to the activated sintering of UO$_2$by the lattice-expansion-induced-enhancement of self diffusion.

  • PDF

Determination of Lattice Parameters and Observation of Lattice Misfits on Rene 80 Cast Blades (Rene 80 주조블레이드에서 격자상수의 결정 및 격자어긋남의 관찰)

  • An, Seong-Uk
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.515-520
    • /
    • 1993
  • By the real use of Rene 80 cast blades at high temperature ${\gamma}^{\prime}$ precipitates in the matrix(${\gamma}$) mainly due to the operating temperature. These precipitates play main role for strenthening of the blades. Generally known that dislocation density increases due to ${\gamma}-{\gamma}^{\prime}$ mismatch by the generation and growth of the precipitates, because the lattice parameter of ${\gamma}^{\prime}$ is higher than that of ${\gamma}$. These lattice parameters of ${\gamma}$ and ${\gamma}^{\prime}$ are determined through the CBED(Convergent Beam Electron Diffraction) method by STEM(Scanning Transmission Electron Microscope) in this work. And also studied, whether and how much the dislocation density increases by the generation and growth of the precipitates.

  • PDF

A discretization method of the three dimensional heat flow equation with excellent convergence characteristics (우수한 수렴특성을 갖는 3차원 열흐름 방정식의 이산화 방법)

  • Lee, Eun-Gu;Yun, Hyun-Min;Kim, Cheol-Seong
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.136-145
    • /
    • 2002
  • The simulator for the analysis of the lattice temperature under the steady-state condition is developed. The heat flow equation using the Slotboom variables is discretized and the integration method of the thermal conductivity without using the numerical analysis method is presented. The simulations are executed on the $N^+P$ junction diode and BJT to verify the proposed method. The average relative error of the lattice temperature of $N^+P$ diode compared with DAVINCI is 2% when 1.4[V] forward bias is applied and the average relative error of the lattice temperature of BJT compared with MEDICI is 3% when 5.0[V] is applied to the collector contact and 0.5[V] is applied to the base contact. BANDIS using the proposed method of integration of thermal conductivity needs 3.45 times of matrix solution to solve one bias step and DAVINCI needs 5.1 times of matrix solution MEDICI needs 4.3 times of matrix solution.

  • PDF