• Title/Summary/Keyword: lattice oxygen

Search Result 223, Processing Time 0.029 seconds

Preparation and Electrical Properties of Manganese-incorporated Neodymium Oxide System

  • Jong Sik Park;Keu Hong Kim;Chul Hyun Yo;Sung Han Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.713-718
    • /
    • 1994
  • Manganese-incorporated neodymium oxide systems with a variety of Mn mol% were prepared to investigate the effect of doping on the electrical properties of neodymium oxide. XRD, XPS, SEM, DSC, and TG techniques were used to analyze the specimens. The systems containing 2, 5, 8, and 10 mol% Mn were found to be solid solutions by X-ray diffraction analysis and the lattice parameters were obtained for the single-phase hexagonal structure by the Nelson-Riley method. The lattice parameters, a and c, decreased with increasing Mn mol%. Scanning electron photomicrographs of the specimens showed that the grain size decreased with increasing Mn mol%. The curves of log conductivity plotted as a function of 1/T in the temperature range from 500 to 1000$^{\circ}C$ at $PO_2$'s of $10^{-5}$ to $10^{-1}$ atm for the specimens were divided into high-and low-temperature regions with inflection points near 820-890$^{\circ}C$. The activation energies obtained from the slopes were 0.53-0.87 eV for low-temperature region and 1.40-1.91 eV for high-temperature region. The electrical conductivities increased with increasing Mn mol% and $PO_2$, indicating that all the specimens were p-type semiconductors. At $PO_2$'s below $10^{-3}$ atm, the electrical conductivity was affected by the chemisorption of oxygen molecule in the temperature range of 660 to 850$^{\circ}C$. It is suggested that electron holes generated by oxygen incorporation into the oxide are charge carriers for the electrical conduction in the high-temperature region and the system includes ionic conduction owing to the diffusion of oxygen atoms in the low-temperature region.

Microstructure Evolution in Sintered CoO under Electric Fields (CoO 소결체의 전기장에 의한 미세구조 변화)

  • 이기춘;유한일
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.912-918
    • /
    • 1992
  • Microstructure evolution including morphological change in the vicinity of the electrodes, porosity change and grain boundary migration was observed in polycrystalline CoO subject to electric fields at 1100 and 121$0^{\circ}C$ in air. At the cathode, the transported cations react with oxygen in the surrounding to form new lattices, while, at the anode, the reverse reaction occurs leading to lattice annihilation. Lattice formation also takes place at the surface of pores near the cathode inducing pore-filling effect. Grain boundary migration was found bo be enhanced or retarded depending on the field direction. It is therefore implied that the driving force of grain boundary migration is the vectorial sum of the curvature-induced chemical potential gradient and the electric field applied.

  • PDF

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma Source and RF Power (Plasma source와 RF power에 따른 NiO박막의 우선배향성 및 표면형상)

  • Hyunwook Ryu;Park, Jinseong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.121-121
    • /
    • 2003
  • NiO thin films are very attractive for use as an antiferromagnetic layer, p-type transparent conducting films, in electrochromic devices and functional sensor layer for chemical sensors, due to their excellent chemical stability, as well as optical, electrical and magnetic properties. In addition, (100)- and (111)-oriented NiO films can be used as buffer layers on which to deposit other oriented oxide films, such as c-axis-oriented perovskite-type ferromagnetic films and superconducting films, because of the similarity in symmetry of oxygen ion lattice and lattice constants between the NiO films and the oriented oxide films. Thus, controlling the crystallographic orientation and surface roughness of the NiO films for a buffer layer are very important.

  • PDF

Oxygen Permeation Properties and Phase Stability of Co-Free $La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Membrane

  • Kim, Ki-Young;Park, Jung-Hoon;Kim, Jong-Pyo;Son, Sou-Hwan;Park, Sang-Do
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • A perovskite-type ($La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$) dense ceramic membrane was prepared by polymerized complex method, using citric acid as a chelating agent and ethylene glycol as an organic stabilizer. Effect of Ti addition on lanthanum-strontium ferrite mixed conductor was investigated by evaluating the thermal expansion coefficient, the oxygen flux, the electrical conductivity, and the phase stability. The thermal expansion coefficient in air was $21.19\;{\times}\;10^{-6}/K$ at 473 to 1,223 K. At the oxygen partial pressure of 0.21 atm ($20%\;O_2$), the electrical conductivity increased with temperature and then decreased after 973 K. The decrement in electrical conductivity at high temperatures was explained by a loss of the lattice oxygen. The oxygen flux increased with temperature and was $0.17\;mL/cm^2{\cdot}min$ at 1,223 K. From the temperature-dependent oxygen flux data, the activation energy of oxygen ion conduction was calculated and was 80.5 kJ/mol at 1,073 to 1,223 K. Also, the Ti-added lanthanum-strontium ferrite mixed conductor was structurally and chemically stable after 450 hours long-term test at 1,173 K.

Preparation and characterization of niobium carbide crystallites

  • Choi, Jeang-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • The preparation and characterization of niobium carbide crystallites were investigated in this study, and in particular, the effect of preparation conditions were studied on the synthesis of niobium carbides crystallites. For this purpose, various characterization techniques including x-ray diffraction, BET surface area, and oxygen uptake measurements were employed to characterize the synthesized niobium carbide crystallites. The niobium carbide crystallites were prepared using niobium oxide and methane gas or methane-hydrogen mixture. Using x-ray diffraction a lattice parameter of $4.45{\AA}$ and a crystallite size ranging from $52{\AA}$ to $580{\AA}$ was found. BET surface areas ranged from $3.2\;m^2/g$ to $16.6\;m^2/g$ and oxygen uptake values varied from $0.5{\mu}mol/g$ to $6.1{\mu}mol/g$. It was observed that niobium carbide crystallites were active for ammonia decomposition reaction. While the BET surface area increased with increasing the oxygen uptake, the conversion of ammonia decomposition reaction decreased. These results indicated that the ammonia decomposition over these materials was considered to be structure-sensitive.

Characterization of PSCF3737 for intermediate temperature solid oxide fuel cell (IT-SOFC) (중.저온형 고체 산화물 연료전지의 공기극으로 사용되는 PSCF3737 물질의 특성에 관한 연구)

  • Park, Kwang-Jin;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.61-64
    • /
    • 2008
  • $Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_{3-\delta}$ (PSCF3737) was prepared and characterized as a cathode material for intermediate temperature-operating solid oxide fuel cell (IT-SOFC). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), and electrical property measurement were carried out to study cathode performance of the material. XPS and EXAFS results proved that oxygen vacancy concentration was decreased and lattice constants of the perovskite structure material were increased by doping Fe up to 70 mol% at B-site of the crystal structure, which also extended the distance between oxygen and neighbor atoms. Thermal expansion coefficient (TEC) of PSCF3737 is smaller than that of $Pr_{0.3}Sr_{0.7}CoO_{3-\delta}$(PSC37) due to lower oxygen vacancy concentration. PSCF3737 showed better cathode performance than PSC37. It might be due good adhesion by a smaller difference of TEC between $Gd_{0.1}Ce_{0.9}O_2$ (CGO91) and electrode. Composite material PSCF3737-CGO91 showed better compatibility of TEC than PSCF3737. However, PSCF3737-CGO91 did not represent higher electrochemical property than PSCF3737 due to decreased reaction sites by CGO91.

  • PDF

Oxygen-Deficient Perovskite, (CaLa) (MgMn)O5.43 Prepared Under Oxygen Gas Pressure of 1 Bar (산소 1기압하에서 합성된 산소결함 Perovskite(CaLa)(MgMn)O$_{5.43}$의 물리화학적 특성연구)

  • 최진호;홍승태;김승준
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.8
    • /
    • pp.603-610
    • /
    • 1991
  • An oxygen deficient perovskite (CaLa)(MgMn)O5.43, with the cubic unit cell parameter of 3.826$\AA$, was prepared 115$0^{\circ}C$ for 10 hrs under the ambient oxygen gas pressure. The average oxidation state of manganese was determined to be 3.86 by the iodometric titration, so that the perovskite could be formulated as (CaLa) ({{{{ { MgMn}`_{ chi } ^{II } }}{{{{ { Mn}`_{ y} ^{III } }}{{{{ { Mn}`_{1- chi -y } ^{IV } }})O5.43 (2x+y=0.14). From X-ray photoelectron spectroscopy, the manganese ions in the lattice are mostly tetravalent, but two paramagnetic configurations were observed in the EPR spectrum: One sharp isotropic signal with hyperfines (ΔH 50 G, g=1.997$\pm$0.002 and │A│=82(4)$\times$10-4 cm-1) and a broad isotropic one (ΔH 1600 G, g=1.994$\pm$0.002), those which correspond respectively to Mn(II) and Mn(IV) ions. According to the magnetic susceptibility measurement, it follows the Curie-Weiss law from 20 K up to room temperature with $\mu$eff=5.23 $\mu$B, which is relatively larger than spin-only value({{{{ { mu }`_{eff} ^{s.o } }}=4.04 $\mu$B) due to the effect of weak ferromagnetic coupling. Such a result is in accord with a theory of semicovalence exchange.

  • PDF

Kinetics and Oxygen Vacancy Mechanism of the Oxidation of Carbon Monoxide on Perovskite$Nd_{1-x}Sr_xCoO_{3-y}$ Solutions as a Catalyst

  • Dong Hoon Lee;Keu Hong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.8
    • /
    • pp.616-622
    • /
    • 1994
  • The oxidation of carbon monoxide by gaseous oxygen in the presence of a powdered $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution as a catalyst has been investigated in the temperature range from 150$^{\circ}$C to 300$^{\circ}$C under various CO and $O_2$ partial pressures. The site of Sr substitution, nonstoichiometry, structure, and microstructure were studied by means of powder X-ray diffraction and infrared spectroscopy. The electrical conductivity of the solid solution has been measured at 300$^{\circ}$C under various CO and $O_2$ partial pressures. The oxidation rates have been correlated with 1.5-and 1.2-order kinetics with and without a $CO_2$ trap, respectively; first-and 0.7 order with respect to CO and 0.5-order to $O_2$. For the above reaction temperature range, the activation energy is in the range from 0.25 to 0.35 eV/mol. From the infrared spectroscopic, conductivity and kinetic data, CO appears essentially to be adsorbed on the lattice oxygens of the catalyst, while $O_2$ adsorbs as ions on the oxygen vacancies formed by Sr substitution. The oxygen vacancy mechanism of the CO oxidation and the main defect of $Nd_{1-x}Sr_xCoO_{3-y}$ solid solution are supported and suggested from the agreement between IR data, conductivities, and kinetic data.

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

A Study on the Oxygen Behavior Characterization of V2O5/TiO2 Catalysts by Ball Milling (V2O5/TiO2 촉매의 Ball Milling에 따른 산소 거동 특성 연구)

  • Kwon, Dong Wook;Park, Kwang Hee;Lee, Sang Moon;Jang, Du Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.605-609
    • /
    • 2011
  • We study on the oxygen behavior of $V_2O_5/TiO_2$ catalysts in the $NH_3$-selective catalytic reduction (SCR) prepared by the ball milling processing. There are not any changes in crystal structure and surface area of the $TiO_2$ catalyst by ball milling, but the maximal reduction temperature decreased in $H_2$-temperature programmed reduction (TPR) analysis. Experimental observations with various concentrations of oxygen indicate that all catalysts showed a very low NOx conversion rate in the absence of oxygen and the reactivity of ball milled catalyst higher depending on the oxygen. It is occurred because the degree of participation of atmospheric oxygen and lattice oxygen is great than that of the not-milled catalyst.