• Title/Summary/Keyword: lateral section

Search Result 547, Processing Time 0.032 seconds

Study on Lubrication Characteristics of Spool Valve with Various Cross-sectional Groove Shapes (다양한 그루브 단면형상에 대한 스풀밸브의 윤활특성 연구)

  • Hong, Sung-Ho;Son, Sang-Ik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.29 no.3
    • /
    • pp.149-159
    • /
    • 2013
  • In this research, the lubrication characteristics of spool valves with various cross-sectional groove shapes were studied. The validity of using the Reynolds equation for the analysis of spool valves with various groove shapes was also investigated. The cross-sectional shapes for the grooves included a triangle, square, and U shape. The characteristics of the flow in the groove were investigated using streamlines. When the number of grooves was increased, the difference between the results obtained from the Reynolds equation and those obtained from the Navier-Stokes equation increased according to the groove shape. Thus, it was found that the Navier-Stokes equation should be used to investigate the lubrication characteristics of the spool valves in those cases. Moreover, in the case where the cross section of the groove was U-shaped, the groove prevented the small eddy current from occurring in the groove. Therefore, the lateral force and friction force of the spool valve with the U-shaped groove were lower than those of the spool valves with other groove shapes.

An Experimental Study on Flexural Strength of Inverted T-shaped Composite Beams encased with concrete (매립형 역T형 합성보의 휨내력에 관한 실험적 연구)

  • Jang, Hee-Sung;Jeong, Jae-Hun;Kim, Jin- Moo;Joo, Kyong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.145-152
    • /
    • 2000
  • In simply supported composite beams, the neutral axis of the composite cross section is usually located near the top flange of the steel H-shape, so that the top flange does not impart much strength to the member. This suggests that omitting the top flange entirely could be a means to lower the cost of the beam without greatly reducing the strength. However, It is not easy for inverted T-shaped composite beam to construct and to apply continuous beam which has negative bending moment. As a result, it would get more workability and decrease capability of lateral buckling and local buckling, if the bottom flange of inverted T-shaped steel used as a form. Therefore. the objectives of this study are to investigate strength and behaviors of inverted T-shaped composite beam which web is encased by concrete and to grasp bending capacity and efficiency of composite by comparing and analyzing in test piece.

  • PDF

Mandibular condyle position in cone beam computed tomography (Cone beam형 전산화단층영상을 이용한 하악과두 위치의 연구)

  • Hwang Hyoung-Joo;Kim Gyu-Tae;Choi Yong-Suk;Hwang Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • Purpose : To evaluate position of the mandibular condyle within articular fossa in an asymptomatic population radiographically by a cone beam computed tomography. Materials and Methods : Cone beam computed tomography of 60 temporomandibular joints was performed on 15 males and 15 females with no history of any temporomandibular disorders, or any other orthodontic or prosthodontic treatments. Position of mandibular condyle within articular fossa at centric occlusion was evaluated. A statistical evaluation was done using a SPSS. Results : In the sagittal views, mandibular condyle within articular fossa was posteriorly located at medial and central sections. In the coronal views, mandibular condyle within articular fossa was laterally located at central section. Mandibular condyles in the right and left sides were showed asymmetric positional relationship at medial, central, and lateral sections. Conclusion : Mandibular condyle within articular fossa in an asymptomatic population was observed nonconcentric position in the sagittal and coronal views.

  • PDF

The Effect of Sensory Stimulation and Therapeutic Environment on Expression of BDNF after Traumatic Brain Injury in the Rat (감각 자극과 치료적 환경이 외상성 뇌손상 흰쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • Purpose : The purpose of this study was to test the effect of balance training for proprioceptive and vestibular sensory stimulation and therapeutic environment on expression of BDNF after traumatic brain injury in the rat. Subject : Twelve Sprague-Dawley rats were randomly assigned into group I and group II. After traumatic brain injury, group I was housed in standard cage for 7 days. Group II was housed in therapeutic cage after balance training for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, the rats were sacrificed and cryostat coronal sections were processed individually in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section from immunohistochemistry using light microscope. Result : Immunohistochemical response of BDNF in lateral nucleus, purkinje cell layer, superior vestibular nucleus and pontine nucleus appeared very higher in group II than in group I Conclusion : The present result revealed that simultaneously application of balance training for proprioceptive and vestibular sensory stimulation input and therapeutic environment in traumatic brain injured rats is enhance expression of BDNF and it is facilitates neural plasticity.

  • PDF

An Investigation of the Coherent Structures in Turbulent Wake Past a Stationary and Rotating Cylinder (정지 및 회전하는 원주에 의한 난류후류의 응집구조)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1310-1321
    • /
    • 1994
  • Turbulent coherent structures in the intermediate wake of a stationary and rotating cylinder, spin rate S=0.7, situated in a uniform were experimentally investigated using a conditionalphase average technique. Measurements were carried out at a section of 8.5 diameters downstream form the center of cylinder and a Reynolds number of $Re=6.5{\times}10^{3}.$/TEX> The phase averaged velocity and velocity vector fields, contours of vorticity, turbulent intermittency function and velocity fluctuation energy are presented and discussed in relation to the large scale coherent structures by Karman vortices that shed periodically from the cylinder. Coherent wake structures of the rotating cylinder is almost identical with stationary cylinder, but the lateral displacement and shrinkage of turbulent wake region is occured by rotation. Rotation of the cylinder result in that the deflection of wake center to deceleration region(Y/D${\simeq}-0.3)$ and the decrease of mean velocity defect(10%), vorticity strength of large scale structures(19%), total velocity fluctuation energy(12%).

Seismic Behavior of Circular Sectional RC Bridge Columns with Various Lap-splice Lengths - An Experimental Study - (축방향철근 겹침이음길이에 따른 RC원형 교각의 거동특성 - 실험적 연구 -)

  • Kim, Ick Hyun;Sun, Chang Ho;Lee, Seung Hwa;Park, Kwang Soon;Seo, Hyeong Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.47-56
    • /
    • 2012
  • It is known that seismic performance of existing bridges having insufficient lateral confinements and lap-splices of longitudinal reinforcements at the base of column decreases dramatically. In this study, small-scaled model tests have been performed to confirm the seismic behaviors of RC bridge piers with various lap-splice lengths. The 8 test models have circular section with diameters of 0.65 m, 0.8 m, 1.0 m, and lap-splice lengths of B-class or C-class. The test results show that the failure modes of models are not depending on the lap-splice length itself but depend on the ratio of lap-splice length to diameter, and that the displacement ductility is also affected by this ratio.

Evaluation of Concrete Structures Considering Reinforcing Bars in Columns (기둥의 보강철근을 고려한 콘크리트 구조물의 거동 평가)

  • Song, Hyung-Soo;Gwon, Ji-Youn;Cha, Hee-Youn;Min, Chang-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.289-292
    • /
    • 2008
  • In this study, we interpreted 20 story building by applying the modified modulus of elasticity considering the reinforcing steel proposed in previous literature, and analyzed the movement of the structure according to axial reinforcing steel ratio and lateral reinforcing steel volume ratio. Additionally, we tried to get the result similar to the actual movement considering the order of the construction by performing the analysis by construction stage. Finally, we tried to reduce the section of the column through the analysis considering the reinforcing steel of the column. When interpreting the 20 story building considering the reinforcing steel in the columns, we can reduce the column members up to 4.94% comparing to the general analysis. If we do the same for each construction stage, it is analyzed that we can reduce up to 19%.

  • PDF

Seismic Performance Analysis of RC Bridge Piers with 3.5 Aspect Ratio depending on Testing Methods (형상비 3.5 RC교각의 실험 방법에 의한 내진성능 분석)

  • Hong, Hyun-Ki;Park, Chang-Young;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.93-96
    • /
    • 2008
  • This paper deals with the shaking table test(STT), the Quasi-Static Test(QST), and the Pseudo-Dynamic Test(PDT) to evaluate the seismic performance of RC bridge piers under near fault ground motion. Five scaled specimens were constructed the weight of the superstructure was applied through the prestressing strand at the centroid of the column section during the QST and PDT. However, the STT was simulated. The lateral inertia force of the superstructure by the mass frame which was linked with the pier because of the limited payload of shaking table. Particularly for the STT, friction underneath the mass frame was minimized by special details and it was verified by a series of pre-load test. Scale factor of the RC piers was 4.25.

  • PDF

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.

Earthquake resistance of structural walls confined by conventional tie hoops and steel fiber reinforced concrete

  • Eom, Taesung;Kang, Sumin;Kim, Okkyue
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.843-859
    • /
    • 2014
  • In the present study, the seismic performance of structural walls with boundary elements confined by conventional tie hoops and steel fiber concrete (SFC) was investigated. Cyclic lateral loading tests on four wall specimens under constant axial load were performed. The primary test parameters considered were the spacing of boundary element transverse reinforcement and the use of steel fiber concrete. Test results showed that the wall specimen with boundary elements complying with ACI 318-11 21.9.6 failed at a high drift ratio of 4.5% due to concrete crushing and re-bar buckling. For the specimens where SFC was selectively used in the plastic hinge region, the spalling and crushing of concrete were substantially alleviated. However, sliding shear failure occurred at the interface of SFC and plain concrete at a moderate drift ratio of 3.0% as tensile plastic strains of longitudinal bars were accumulated during cyclic loading. The behaviors of wall specimens were examined through nonlinear section analysis adopting the stress-strain relationships of confined concrete and SFC.