• Title/Summary/Keyword: lateral momentum flux

Search Result 3, Processing Time 0.016 seconds

Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain (경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성)

  • Lee, Young-Hee
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

Migration Characteristics in Sine-Wave Type Rivers

  • Cha, Young-Kee;Pai, Dong-Man;Lee, Jong-Seok
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.81-92
    • /
    • 1993
  • This paper presents a model on the migration characteristics which is developed by using the equations for conservation of mass, momentum, and for lateral stability of the streambed. This model enables prediction of the magnitude the location of near-bank bed scour as well as rates and direction of meander migration in the sine-wave type revers (SWR) of small sinuosity. It is evident from this study that the transverse bed slope factor B' and transverse mass flux factor play significant roles in predicting migration characteristics, and their values of B'=4.0 and $\alpha$= 0.4 seem reasonable. This model will produce a useful quidelines in planning, design, construction, and development of SWR basin projects.

  • PDF

Migration Characteristics in Sine-Wave Type Rivers (정현파형하천의 이행특성)

  • 차영기;배동만
    • Water for future
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 1992
  • This study is a model on the Migration Characteristics which developed by using the equations for conservation of mass, momentum and for lateral stability of the streambed, an the model can be examined for magnitude and location of near-bank bed scour as well as rates and direction of meander migration in which sine-Wave type rivers(SWR) of the small sinuosity. It is evident from this study that the transverse bed slope factor B' and transverse mass flux factor $ play significient roles, and show reasonable that the values are B'=4.0 and $=0.4 respectively . It will be a useful guide in planning, design, construction, and development of SWR river-basin projects.

  • PDF