• Title/Summary/Keyword: lateral loads

Search Result 765, Processing Time 0.019 seconds

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

A Lateral Behavior Characteristics of Group Concrete Pile by Model Tests (모형실험에 의한 무리 콘크리트 말뚝의 수평거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un;Kim, Jin-Bok;Lim, Dong-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.57-64
    • /
    • 2012
  • The lateral behavior characteristics of concrete group pile under the lateral load were examined by the laboratory model tests in this study. Piles were socketed 1D(D : pile diameter) in the concrete block, and model tests were executed on $2{\times}3$ group piles, of which the length were 11D, 15D and 20D. All results of loading tests under each condition was presented by the lateral load-displacement curves, and the displacements in the ground under the lateral loads were measured. As a results of model tests, as the ratio of pile length/diameter(L/D) was decreased, the yielding load and the lateral displacement at that load were increased. The yielding load was evaluated as the load at lateral displacement of 15 mm. The yielding loads at the pile length of 11D, 15D and 20D were 11.7, 6.2kN and 3.4kN. The lateral displacements of pile in the ground under each condition were measured linearly and the failure occurred at the location where the piles were socketed in concrete block.

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

Study on the Lateral Force Fluctuations in a Rocket Nozzle (로켓노즐에서 발생하는 횡력변동에 관한 연구)

  • Nagdewe, Suryakant;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.315-319
    • /
    • 2009
  • Investigation of the lateral force fluctuations in an axisymmetric overexpanded compressed truncated perfect (CTP) nozzle for the shutdown transient is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional unsteady numerical simulation has been carried out over an axisymmetric CTP nozzle to simulate the lateral force fluctuations in nozzle during shutdown process. Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. Two equation k-$\omega$ SST turbulence model is selected. Unsteady pressure is measured at four locations along the nozzle wall. Present pressure variation compared well with the experimental data. During shutdown transient, separation pattern varies from FSS to RSS and finally returns to FSS. Several pressure peaks are observed during the RSS separation pattern. These pressure peaks generate lateral force or side loads in rocket nozzle.

  • PDF

Quantitative Lateral Drift Control of RC Tall Frameworks using Dynamic Displacement Sensitivity Analysis (동적 변위민감도 해석을 이용한 고층 RC 골조구조물의 정량적인 횡변위 제어 방안)

  • Lee, Han-Joo;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.103-110
    • /
    • 2006
  • This study presents a technique to control quantitatively lateral drift of RC tall frameworks subject to lateral loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. Three types of 10 and 50 story RC framework models are considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Cyclic tests of steel frames with composite lightweight infill walls

  • Hou, Hetao;Chou, Chung-Che;Zhou, Jian;Wu, Minglei;Qu, Bing;Ye, Haideng;Liu, Haining;Li, Jingjing
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.163-178
    • /
    • 2016
  • Composite Lightweight (CL) insulated walls have gained wide adoption recently because the exterior claddings of steel building frames have their cost effectiveness, good thermal and structural efficiency. To investigate the seismic behavior, lateral stiffness, ductility and energy dissipation of steel frames with the CL infill walls, five one-story one-bay steel frames were fabricated and tested under cyclic loads. Test results showed that the bolted connections allow relative movement between CL infill walls and steel frames, enabling the system to exhibit satisfactory performance under lateral loads. Additionally, it is found that the addition of diagonal steel straps to the CL infill wall significantly increases the initial lateral stiffness, load-carrying capacity, ductility and energy dissipation capacity of the system. Furthermore, the test results indicate that the lateral stiffness values of the frames with the CL infill wall are similar to those of the bare steel frames in large lateral displacement.

Determining elastic lateral stiffness of steel moment frame equipped with elliptic brace

  • Habib Ghasemi, Jouneghani;Nader, Fanaie;Mohammad Talebi, Kalaleh;Mina, Mortazavi
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.293-318
    • /
    • 2023
  • This study aims to examine the elastic stiffness properties of Elliptic-Braced Moment Resisting Frame (EBMRF) subjected to lateral loads. Installing the elliptic brace in the middle span of the frames in the facade of a building, as a new lateral bracing system not only it can improve the structural behavior, but it provides sufficient space to consider opening it needed. In this regard, for the first time, an accurate theoretical formulation has been developed in order that the elastic stiffness is investigated in a two-dimensional single-story single-span EBMRF. The concept of strain energy and Castigliano's theorem were employed to perform the analysis. All influential factors were considered, including axial and shearing loads in addition to the bending moment in the elliptic brace. At the end of the analysis, the elastic lateral stiffness could be calculated using an improved relation through strain energy method based on geometric properties of the employed sections as well as specifications of the utilized materials. For the ease of finite element (FE) modeling and its use in linear design, an equivalent element was developed for the elliptic brace. The proposed relation was verified by different examples using OpenSees software. It was found that there is a negligible difference between elastic stiffness values derived by the developed equations and those of numerical analysis using FE method.

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF

Application of Direct Analysis Method Considering Initial Imperfection Limitation (초기변형 허용값을 고려한 직접해석법 적용)

  • Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2013
  • As the first step to suggest effective ways of using direct analysis method considering current situations of construction fields in Korea, analytical approach is used to verify direct analysis method which adapts initial imperfection limitation of Korean specification of building construction. The main analytical variables are size of frames, axial load ratio, axial load distribution, value of notional loads, location of notional loads, and applied method of notional loads. The results show that the use of initial imperfection limitation of Korean specification, L/700 is suitable, and the recommendable method to use direct analysis method is applied notional loads based on L/700 as minimum lateral load at each story, even if B2 is less than 1.5 and lateral loads exist.