• 제목/요약/키워드: lateral load responses

검색결과 83건 처리시간 0.021초

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

강관말뚝의 수평거동에 대한 모형실험 연구(I) -대구지역 낙동강 모래에 대하여 (Model Tests on the Lateral Behavior of Steel Pipe Piles(I) in the Nak -dong River Sand)

  • 김영수;허노영
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.59-74
    • /
    • 1997
  • 본 논문은 낙동강 유역의 사질토 지반에서 수평하중을 받는 강관 말둑의 수평거동을 모형실첨을 통해 관찰하였다. 븐 연구의 목적은 말뚝의 수평거동(하중-변위 잔계,지반내 말뚝의 모멘트 분포, 최대 모멘트-변위 관계 등)에 대한 말뚝의 강성, 말뚝의 근입길이, 지반의 상대밀도, 하중 재하속도, 말뚝두부의 구속조건, 그리고 지반내의 비균질토의 영향에 관하여 실험적인 연구를 수행하고 이러한 영향들을 정량화 할 수 있는 결과들을 얻고자 한다. 비선형적인 하중-변위 관계는 모형실험의 결과들로부터 2차 곡선방정식으로 회귀분석하여 구하였으며, 임의 수평 변위에 대한 수평하중, 항복하중, 극한하중 그리고 최대 휭모멘트와 항복쉽모멘트는 상대밀도를 포함하는 지수함수식의 형태로 회귀분석하여 구하였다. 수평 극한하중에 관한 Brom's의 이론 결과와 실험결과 비교에서, 짧은 말뚝과 긴 말뚝의 결과가 서로 반대로 나타난 것은 가정한 지반반력이 깊은 지점에서 낙동강 사질토의 지반반력보다 작아서 나타나는 것으로 판단된다. 균질충과 비균질토 지반의 수평거동 비교에서, 하부지반의 상 대밀도보다 상부지반의 상대 밀도가 하중-변위관계에 더 큰 영향을 끼치고 있으며, 하부와 상부 지반의 상대밀도 차가 클수록 그런현상은 뚜렷하게 나타났다.

  • PDF

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.

탄소섬유강화플라스틱 재료 레저선박의 구조강도 평가를 위한 시험설비 구축과 운용에 관한 연구 (The Development of Structural Test Facility for the Strength Assessment of CFRP Marine Leisure Boat)

  • 정한구;장양;염덕준
    • 대한조선학회논문집
    • /
    • 제54권4호
    • /
    • pp.312-320
    • /
    • 2017
  • This paper deals with the development of structural test facility for the strength assessment of marine leisure boat built from carbon fiber reinforced plastics (CFRP) materials. The structural test facility consists of test jig, load application and control system, and data acquisition system. Test jig, and load application and control system are designed to accommodate various size and short span to depth ratios of single skin, top-hat stiffened and sandwich constructions in plated structural format such as square and rectangular shapes. A lateral pressure load, typical and important applied load condition to the plates of the hull structure for marine leisure boat, is simulated by employing a number of hydraulic cylinders operated automatically and manually. To examine and operate the structural test facility, five carbon/epoxy based FRP square plates having the test section area of $1m^2$, which are part of CFRP marine leisure boat hull, are prepared and they are subjected to monotonically increasing lateral pressure loads. In the test preparation, considering the symmetry of the plates geometry, various strain gauges and linear variable displacement transformer are used in conjunction with data acquisition system utilizing LabVIEW. From the test observation, the responses of the CFRP hull structure of marine leisure boat are understood by obtaining load to deflection and strain to load curves.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Failure behaviors of C/C composite tube under lateral compression loading

  • Gao, Yantao;Guan, Yuexia;Li, Ke;Liu, Min;Zhang, Can;Song, Jinliang
    • Nuclear Engineering and Technology
    • /
    • 제51권7호
    • /
    • pp.1822-1827
    • /
    • 2019
  • Mechanical responses and failure behaviors of advanced C/C composite tube are very important for structural component design in nuclear reactor. In this study, an experimental investigation was conducted to study mechanical properties of C/C composite tube. Quasi-static compression loading was applied to a type of advanced composite tube to determine the response of the quasi-static load displacement curve during progressive damage. Acoustic emissions (AE) signals were captured and analyzed to characterize the crack formation and crack development. In addition, the crack propagation of the specimens was monitored by imaging technique and failure mode of the specimen was analyzed. FEM is appled to simulate the stress distribution. Results show that advanced C/C composite tube exhibits considerable energy absorption capability and stability in load-carrying capacity.

고차진동모드의 영향을 고려한 층지진하중 (The Effect of Higher Vibration Modes on the Design Seismic Load)

  • 이동근;신용우
    • 전산구조공학
    • /
    • 제3권4호
    • /
    • pp.123-132
    • /
    • 1990
  • 일반적으로 구조물의 내진설계에 있어서는 등가정적해석법이 주로 사용되고 있다. 현재 사용되고 있는 등가정적해석법은 구조물의 거동이 주로 기본진동 모드에 의해 지배된다는 가정하에 유도되었으므로 기본진동 주기가 긴 구조물에 대해서는 구조물의 동적특성을 정확하게 예측하기가 어렵다. 본 연구에서는 구조물의 설계시 직접적인 영향을 미치게 되는 층전단력의 분포를 주요 관점으로하여 구조물의 동적특성에 미치는 고차모드의 영향을 정확히 고려할 수 있는 층지진하중에 대하여 연구했다. 층지진하중의 분포를 개선하기 위해 현행 내진설계 기준의 등가정적해석법에서 쓰이는 층지진하중과 모드해석을 이용하여 얻은 층지진하중의 차이를 파악하고 이로부터 고차모드의 영향이 고려된 층지진하중의 분포를 제안했다.

  • PDF

말뚝형태 및 지반조건에 따른 현장타설말뚝의 수평지지력 평가 (Evaluation of Lateral Load Capacity of Drilled Shafts with Pile Shape and Soil Conditions)

  • 이준환;백규호;김대홍;황성욱;김민기
    • 한국지반공학회논문집
    • /
    • 제23권2호
    • /
    • pp.61-69
    • /
    • 2007
  • 본 연구에서는 현장타설말뚝을 대상으로 지반조건 및 말뚝형태에 따른 수평지지력과 수평거동에 대하여 실험적 분석을 실시하였다. 이를 위해 가압토조실험을 수행하였으며 상대밀도와 지반응력의 변화를 고려하여 원통형과 테이퍼형 말뚝에 대해 재하시험을 수행하였다. 토조실험결과, 수직응력과 수평응력은 모두 말뚝의 수평거동 및 극한수평 지지력에 영향을 나타내는 것으로 관찰되고 있으나, 수평응력의 영향이 보다 더 크게 작용하고 있음을 알 수 있다. 상대밀도 또한 수평거동 및 지지력에 상당한 영향을 미치고 있는 것으로 나타나고 있었다. 수평거동에 대한 말뚝형태의 영향은 지반상태에 따라 다소간의 차이가 보이고 있으나, 전반적으로 지반응렬이나 상대밀도와 같은 지반특성치에 의한 영향에 비해서는 작게 나타나고 있었다. 기존 예측식을 이용한 비교분석 결과, 기존의 예측식에 의해 산정된 결과는 실측된 결과와 상당한 차이를 보이고 있었으며, 이는 지지력 산정시 수평응력의 변화량이 고려되어 있지 않았기 때문임을 알 수 있었다.