• Title/Summary/Keyword: lateral load resistant system

Search Result 7, Processing Time 0.02 seconds

Lateral Drift Control and Resizing Technique for Tall Buildings using Lateral-Stiffness Influence Matrix (횡강성 영향행렬을 이용한 고층건물의 횡변위 제어 및 단면 재산정 방안)

  • 이한주;김치경;김호수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.271-279
    • /
    • 2002
  • This study develops the module to find the lateral stiffness influence matrix of each story and performs the displacement sensitivity analysis by virtual load method for the efficiency of optimal design using lateral stiffness influence matrix. Also, resizing technique based on the estimated lateral stiffness increment factors is developed to apply directly the results of optimal design. To this end, resizing technique is divided into the continuous and discrete section design methods. And then the relationships between section properties and section size are established. Specifically, an initial design under strength constraints is first performed, and then the lateral load resistant system is designed to control lateral displacements yet exceeding the drift criteria. Two types of 45-story three dimensional structures we presented to illustrate the features of the lateral drift control and resizing technique for tall buildings proposed in this study.

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

A study on the seismic behavior of Reinforced Concrete (RC) wall piers strengthened with CFRP sheets: A pushover analysis approach

  • Fatemeh Zahiri;Ali Kheyroddin;Majid Gholhaki
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.419-437
    • /
    • 2023
  • The use of reinforced concrete (RC) shear walls (SW) as an efficient lateral load-carrying system has gained recent attention. However, creating openings in RC shear walls is unavoidable due to architectural requirements. This reduces the walls' strength and stiffness, resulting in the development of wall piers. In this study, the cyclic behavior of RC shear walls with openings, reinforced with carbon fiber reinforced polymer (CFRP) sheets in various patterns, was numerically investigated. Finite element analysis (FEA) using ABAQUS software was employed. Additionally, the retrofitting of sub-standard buildings (5, 10, and 15-story structures) designed based on the old and new versions of the Iranian Code of Practice for Seismic-Resistant Structures was evaluated. Nonlinear static analyses, specifically pushover analyses, were conducted on the structures. The best pattern of CFRP wrapping was determined and utilized for retrofitting the sub-standard structures. Various structural parameters, such as load-carrying capacity, ductility, stress contours, and tension damage contours, were compared to assess the efficiency of the retrofit solution. The results indicated that the load-carrying capacity of the sub-standard structures was lower than that of standard ones by 57%, 69%, and 67% for 5, 10, and 15-story buildings, respectively. However, the retrofit solution utilizing CFRP showed promising results, enhancing the capacity by 10-25%. The retrofitted structures demonstrated increased yield strength, ultimate strength, and ductility through CFRP wrapping and effectively prevented wall slipping.

Experimental Study of the Seismic Performance of CJS Hybrid Structural Systems Connected to the CFT Column (CFT와 합성보로 이루어진 CJS합성구조시스템의 내진성능 실험 연구)

  • Lim, Chang Gue;Shin, Jiuk;Moon, A Hae;Kim, Yong Nam;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.83-93
    • /
    • 2022
  • In this study, to verify the structural performance of the Composite Joint System (CJS) hybrid structural model, a cyclic load test was performed and evaluated and verified through the test. To verify the structural performance of the CJS hybrid structural systems' joint and evaluate the seismic performance, four three-dimensional real-size specimens were developed with three internal beam-column specimens and one external beam-column specimen. The three interior column specimens were classified by different methods of joining the upper column and lower column, and the same bonding method as the primary specimen was used for the exterior column. The structural performances in terms of drift, strength, and energy dissipation capacity were analyzed and compared based on the experimental results. From the displacement-based loading experiment, all specimens showed a lateral drift of 4.0% without any significant strength drop and stable energy dissipation capacity.

Experiments on the Performance of a Thin-Plate Damper Attached to a Coupling Beam (연결보에 부착된 박판형 금속 감쇠기의 성능실험)

  • Lee, Young-Wook;Chae, Ji-Yong;Park, Tae-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.25-33
    • /
    • 2012
  • To examine the performance of a thin plate damper attached to coupling beam of bearing wall system, 5 specimens were designed with the variable parameters of the thickness and length of a thin steel plate, which was constructed and tested with a lateral load with up to a 5% drift ratio. The result was that the total amount of the energy dissipation of the specimen with the thin plate damper was greater than that of the standard RC specimen, and the plate buckling and plastic deformation could be seen in steel plate. The shorter the length of the damper, the higher was the lateral resistant force, but there was no apparent increase in the energy dissipation. By comparison of the experiments with the elastic buckling analysis, it was shown that the buckling force from the analysis could properly estimate the maximum value of the linear elastic range.

Displacement-based Seismic Assessment and Rehabilitation of Asymmetric Wall Structures (비대칭 벽식 구조지 변위기초 내진성능평가 및 보강)

  • Hong, Sung-Gul;Ha, Tae-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.23-32
    • /
    • 2005
  • Torsional behavior of eccentric structure under seismic leading may cause the stress and/or deformation concentration, which arouse the failure of the structure in an unexpected manner. This study suggests D-R relationship which shows the overall displacement and rotation of the system based on the ultimate displacement capacity of the each lateral load resistant member. Using the suggested D-R relationship and displacement spectrum, the seismic assessment is conducted and verified in comparison with the time history analysis result. Multi-level seismic assessment Is considered which takes multiple seismic hazard levels and respective performance levels into account. Finally, based on the seismic assessment result, seismic rehabilitation process is presented. In this research, two rehabilitation methods are considered. One is done by means of stiffening/strengthening the seismic resistant members, and the other is based on the member ductility. Especially, in the first method, to optimize the rehabilitation result, the rehabilitation problem is modeled as an optimization problem, and solved using BFGS quasi-Newton optimization method.

Evaluation of Structural Performance the Hollow PC Column Joint Subjected to Cyclic Lateral Load (반복 횡하중을 받는 유공 PC 기둥 접합부의 구조성능 평가)

  • Seo, Soo-Yeon;Yoon, Seong-Joe;Lee, Woo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.335-343
    • /
    • 2008
  • In order to improve the workability in erecting Precast Concrete (PC) members and enhance the seismic resistance capacity of the joints in PC moment frames, a new PC column and its construction process are introduced in this paper. This column is manufactured by centrifugal force in keeping the hollow tube inside; the hollow is little bit wide and the grout can be poured from top to bottom after erection at site so that more compact grouting is possible in horizontal joint. The repeated cyclic loading test for four full scaled specimens was conducted to evaluate the seismic resistance capacity of the joint designed by the proposed system. For the continuity of main reinforcements in column, two connecting methods are used in designing specimens; one is to use mechanical connector and other is lab splice. From the cyclic lateral loading test, it was found that the seismic capacity of the developed PC column joint is comparable to that of monolithic joint.