• Title/Summary/Keyword: lateral friction

Search Result 215, Processing Time 0.028 seconds

Design of Lateral Force Estimation Model for Rough Terrain Mobile Robot and Improving Estimation Reliability on Friction Coefficient (야지 주행 로봇을 위한 횡 방향 힘 추정 모델의 설계 및 마찰계수 추정 신뢰도의 향상)

  • Kim, Jiyong;Lee, Jihong;Joo, Sang Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.174-181
    • /
    • 2018
  • For a mobile robot that travels along a terrain consisting of various geology, information on tire force and friction coefficient between ground and wheel is an important factor. In order to estimate the lateral force between ground and wheel, a lot of information about the model and the surrounding environment of the vehicle is required in conventional method. Therefore, in this paper, we are going to estimate lateral force through simple model (Minimal Argument Lateral Slip Curve, MALSC) using only minimum data with high estimation accuracy and to improve estimation reliability of the friction coefficient by using the estimated lateral force data. Simulation is carried out to analyze the correlation between the longitudinal and transverse friction coefficients and slip angles to design the simplified lateral force estimation model by analysing simulation data and to apply it to the actual field environment. In order to verify the validity of the equation, estimation results are compared with the conventional method through simulation. Also, the results of the lateral force and friction coefficient estimation are compared from both the conventional method and the proposed model through the actual robot running experiments.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

The effect of mainshock-aftershock on the residual displacement of buildings equipped with cylindrical frictional damper

  • Mirtaheri, Masoud;Amini, Mehrshad;Rad, Moosa Doosti
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2017
  • Recently, Friction dampers become popular due to the desirable performance in the energy dissipation of lateral loads. A lot of research which has been conducted on these dampers results in developing friction dampers with low sensitivity to the number of cycles and temperature increases. Friction dampers impose high residual drifts to the buildings because of low post-yield stiffness of the damper which results from increasing lateral displacement and period of buildings. This issue can be more critical under strong aftershocks which results in increasing of structural damages. In this paper, in addition to the assessment of aftershock on steel buildings equipped with friction dampers, methods for controlling residual drifts and decreasing the costs of retrofitting are investigated. Utilizing rigid connections as a lateral dual system and activating lateral stiffness of gravity columns by adding elastic braces are as an example of effective methods investigated in this research. The results of nonlinear time history analyses on the low to medium rise steel frames equipped with friction dampers illustrate a rise in residual drifts as the result of aftershocks. In addition, the results show that different slip loads of friction damper can affect the residual drifts. Furthermore, elastic stories in comparison to rigid connections can reduce residual drifts of buildings in an effective fashion, when most slip loads of friction dampers are considered.

A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile) (SIP 말뚝의 주면마찰 특성에 관한 연구)

  • 천병식;임해식;강재모;김도형;지원백
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF

A Comparison of Friction Force Calibration in Lateral Force Microscope

  • Wang Yuli-Ang;Kim Hong-Joon;Kong Ho-Sung;Zhao Xu-Zheng;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.5-9
    • /
    • 2006
  • The main principle of two widely used methods which were proposed by Ruan and Bhushan, and by Ogletree and Carpick are introduced. Experiments were conducted using the two methods to measure friction force between AFM probe and silicon sample quantitatively. To characterize the frictional properties, the conversion factors of the two methods by which lateral electronic signal is converted into actual friction force were calculated. The experimental results show that that the conversion factors were extraordinarily different from each other. Further research should be done to identity the reasons for these differences.

Investigation of the Frictional Behavior with respect to Surface Geometry and Surface Material at Nanoscale (나노스케일에서의 표면형상 및 재료변화에 대한 마찰거동 고찰)

  • 성인하;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.36-41
    • /
    • 2001
  • In this work, the changes in the friction force(lateral force) with respect to nanoscale geometric variation were investigated using an Atomic Force Microscope and a Lateral Force Microscope. It could be concluded that the changes in the friction force correspond well to the slope change rather than the surface slope itself, and that the influence of slope change on the frictional behavior is dependent on the magnitude of the slope and the torsional stiffness of the cantilever. Also, the nominal friction force is found to be more significantly affected by the material and the physical-chemical state of the surface rather than by nanoscale geometric steps. However, the change in nanoscale geometric details of the surface cause instantaneous change and slight variation in the friction signal.

  • PDF

Load and Stiffness Dependence of Atomistic Sliding Friction (원자스케일 마찰의 하중 및 강성 의존성)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Despite numerous researches on atomic-scale friction have been carried out for understanding the origin of friction, lots of questions about sliding friction still remain. It is known that friction at atomic-scale always shows unique phenomena called 'stick-slips' which reflect atomic lattice of a scanned surface. In this work, experimental study on the effects of system stiffnesses and load on the atomic-scale stick-slip friction of graphite was performed by using an Atomic Force Microscope and various cantilevers/tips. The objective of this research is to figure out the dependency of atomic-scale friction on the nanomechanical properties in sliding contact such as load, stiffness and contact materials systematically. From this work, the experimental observation of transitions in atomic-scale friction from smooth sliding to multiple stick-slips in air was first made, according to the lateral cantilever stiffness and applied normal load. The superlubricity of graphite could be verified from friction vs. load experiments. Based on the results, the relationship between the stickslip behaviors and contact stiffness was carefully discussed in this work. The results or this work indicate that the atomic-scale stick-slip behaviors can be controlled by adjusting the system stiffnesses and contact materials.

Measurement of K0 and K'0 during loading and unloading of loose sand

  • Shay Nachum;Mark Talesnick;Sam Frydman
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.97-110
    • /
    • 2023
  • The coefficient of lateral earth pressure at rest in loose sand during virgin loading, K0 , and during unloading, K'0 , have been determined from laterally confined load-unload tests. The tests included measurement of lateral pressure with null pressure gauges, side wall friction with newly designed friction meters and applied pressure and base pressure with load cells. The importance of accounting for side-wall friction when evaluating the distribution of vertical pressure over the height of the soil specimen was demonstrated. Relatively uniform friction was observed during loading, but this was not the case during unloading unless friction reduction measures were employed. While the measured value of K0 was found to be close to, if slightly higher than the value commonly estimated on the basis of friction angle, φ', the ratio of K'0 to K0 was found to reasonably fit an expression of the form K'0/K0 = 1 + C·log(OCR), with C equal to 1 in the present tests.

Dynamic Characteristic Analysis of 3-Piece Freight Vehicle with Wedge Friction Damper Using ADAMS (ADAMS를 이용한 3-Piece 마찰 웨지 댐퍼가 장착된 화차의 동특성 해석)

  • Lee, Chul-Hyung;Han, Myung-Jae;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.299-310
    • /
    • 2017
  • In this work, an independent-load friction wedge model was developed using the ADAMS/View program to predict the performance of a freight vehicle with a bogie employing a 3-piece friction wedge. The friction wedge model can generate friction according to lateral and vertical directions of the bolster. The developed friction wedge model was applied to the ADAMS/Rail vehicle model, and results of the dynamic analysis showed a critical speed of 210km/h. In the linear safety analysis, it was confirmed that the lateral and vertical limit of acceleration of the vehicle were satisfied based on UIC518. In the 300R curve line, the application speed was 70km/h, which was satisfied with the limit acceleration of the car-body and bogie based on UIC518. Also, the developed model satisfied the wheel loading, lateral force and derailment coefficient of "The Regulations on Safety Standards for Railway Vehicles"

A Study on Lateral Tire-road Friction Coefficient Estimation Using Tire Pneumatic Trail Information (타이어 뉴메틱 트레일 정보를 활용한 횡방향 타이어 노면 마찰 계수에 관한 연구)

  • Han, Kyoungseok;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.310-318
    • /
    • 2016
  • The demands for vehicle safety systems such as ABS and ESC have been increased. Accurate vehicle state estimation is required to realized the abovementioned systems and tire-friction coefficient is crucial information. Estimation of lateral tire-road friction coefficient using pneumatic trail information is mainly dealt in this paper. Pneumatic trail shows unique characteristics according to the wheel side slip angle and these property is highly sensitive to vehicle lateral motion. The proposed algorithm minimizes the use of conventional tire models such as magic formula, brushed tire model and Dugoff tire model. The pure side slip maneuver, which means no longitudinal dynamics, is assumed to achieve the ultimate goal of this paper. A simulation verification using Carsim and Simulink is performed and the results show the feasibility of the proposed algorithms.