• 제목/요약/키워드: lateral drift ratio limits

검색결과 5건 처리시간 0.018초

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

중층 규모 철근콘크리트 주거형 건물의 시공 중 구조성능 분석 (Analyses of Structural Performances for Reinforced Concrete Middle-Rise Residential Building under Construction)

  • 고준영;김재요
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.96-103
    • /
    • 2019
  • 중층 철근콘크리트 주거형 건물은 국내에서 많은 비중을 차하며, 이러한 건물의 시공단계에서 발생 될 수 있는 문제에 대한 구조성능 분석이 필요하다. 이를 위하여, 25층 규모의 중층 철근콘크리트 주거형 건물을 예제모델로 선정해 구조성능 분석을 진행하였다. 예제모델을 5층, 10층, 15층, 20층, 25층의 시공단계 모델과 설계가 완료된 완공단계 모델로 구분해 구조해석을 수행하였다. 완공단계와 시공단계 모델들에 대하여, 고유치해석, 횡력저항성능, 완공단계에서의 설계강도비와 시공단계에서의 설계강도비를 비교를 통한 단면성능 검토를 수행하였다. 검토 결과, 시공단계와 완공단계 모두 횡변위와 층간변위비에서 건축구조기준 제한을 초과하지 않았는 것을 확인하였고, 단면성능 검토에서는 벽체의 일부 데이터를 제외한 모든 부재에서 구조적 안전성을 확인하였다. 따라서, 중층 철근콘크리트 주거형 건물의 완공단계에서 구조적 안정성이 확보되면 시공단계에서도 구조적 안정성 학보가 이루어진다는 결론을 도출할 수 있었다.