• Title/Summary/Keyword: lateral damage

Search Result 442, Processing Time 0.032 seconds

Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass ($Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Whan;Kim, Sung-Ho;Jang, Jong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF

Seismic fragility assessment of shored mechanically stabilized earth walls

  • Sheida Ilbagitaher;Hamid Alielahi
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.277-293
    • /
    • 2024
  • Shored Mechanically Stabilized Earth (SMSE) walls are types of soil retaining structures that increase soil stability under static and dynamic loads. The damage caused by an earthquake can be determined by evaluating the probabilistic seismic response of SMSE walls. This study aimed to assess the seismic performance of SMSE walls and provide fragility curves for evaluating failure levels. The generated fragility curves can help to improve the seismic performance of these walls through assessing and controlling variables like backfill surface settlement, lateral deformation of facing, and permanent relocation of the wall. A parametric study was performed based on a non-linear elastoplastic constitutive model known as the hardening soil model with small-strain stiffness, HSsmall. The analyses were conducted using PLAXIS 2D, a Finite Element Method (FEM) program, under plane-strain conditions to study the effect of the number of geogrid layers and the axial stiffness of geogrids on the performance of SMSE walls. In this study, three areas of damage (minor, moderate, and severe) were observed and, in all cases, the wall has not completely entered the stage of destruction. For the base model (Model A), at the highest ground acceleration coefficient (1 g), in the moderate damage state, the fragility probability was 76%. These values were 62%, and 54%, respectively, by increasing the number of geogrids (Model B) and increasing the geogrid stiffness (Model C). Meanwhile, the fragility values were 99%, 98%, and 97%, respectively in the case of minor damage. Notably, the probability of complete destruction was zero percent in all models.

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

The Stability of Foundation Piles for Abutment (교대기호말뚝의 안정)

  • 홍원표;안종필
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.67-82
    • /
    • 1991
  • When bridge abutments are constructed on pile foundations in unstable slope, horizontal deflections may be developed in the piles and the abutments due to lateral soil movements arisen from backfills. In most of the above mentioned cases, the piles are situated in a soft layer where lateral earth pressures are developed between the piles and the soils. The undesirable lateral earth pressures decreases the stability of the piles. However, the piles may have a preventive effect against lateral soil movements and improve the stability of the slope. For the stability problem of such slope containing piles in a row, two kinds of analyses for the slope-stability and the pile-stability have to be performed. The whole stability of bridge abutments on pile foundation can be obtained only by the stabilization for both the slope and the piles. A reasonable analytical method for the bridge abutments on pile foundation was established in this study By use of the analytical method for an example, several factors which influence affect the stability of bridge abutment were investigated. Finally, for the bridge abutment subjected to lateral deflections damage, the fixity condition of pile head was investigated.

  • PDF

An Experiment on Redundancy in Simple Span Two-Girder Bridge - Effects of Lateral Bracing (단경간 2-거더교의 여유도 평가 실험-수평브레이싱의 효과)

  • Park, Yong Myung;Joe, Woon Do Ji;Hwang, Min Oh;Lee, Dae Yong;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.271-280
    • /
    • 2007
  • This paper presents the results of an experimental study to evaluate the redundancy in two plate-girder bridges, which are generally classified as non-redundant load path structures. The study was performed at a time when one of the two girders was damaged. The bottom lateral bracing was considered the experimental variable, and two 1/5-scale bridge specimens of simple span with and without a lateral bracing system were fabricated. Loading tests were first performed on the intact specimens without a cracked girder, within an elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and the concrete deck redistributed some of the load to the uncracked girder, but the lateral bracing system played an important role in improving the redundancy during the damage and was also effective for load redistribution even when the bridge was intact.

Shake table testing of confined adobe masonry structures

  • Khan, Faisal Zaman;Ahmad, Muhammad Ejaz;Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.149-160
    • /
    • 2021
  • Buildings made using the locally available clay materials are amongst the least expensive forms of construction in many developing countries, and therefore, widely popular in remote areas. It is despite the fact that these low-strength masonry structures are vulnerable to seismic forces. Since transporting imported materials like cement and steel in areas inaccessible by motorable roads is challenging and financially unviable. This paper presents, and experimentally investigates, adobe masonry structures that utilize the abundantly available local clay materials with moderate use of imported materials like cement, aggregates, and steel. Shake-table tests were performed on two 1:3 reduce-scaled adobe masonry models for experimental seismic testing and verification. The model AM1 was confined with vertical lightly reinforced concrete columns provided at all corners and reinforced concrete horizontal bands (i.e., tie beams) provided at sill, lintel, and eave levels. The model AM2 was confined only with the horizontal bands provided at sill, lintel, and eave levels. The models were subjected to sinusoidal base motions for studying the damage evolution and response of the model under dynamic lateral loading. The lateral forcedeformation capacity curves for both models were developed and bi-linearized to compute the seismic response parameters: stiffness, strength, ductility, and response modification factor R. Seismic performance levels, story-drift, base shear coefficient, and the expected structural damages, were defined for both the models. Seismic performance assessment of the selected models was carried out using the lateral seismic force procedure to evaluate their safety in different seismic zones. The use of vertical columns in AM1 has shown a considerable increase in the lateral strength of the model in comparison to AM2. Although an R factor equal to 2.0 is recommended for both the models, AM1 has exhibited better seismic performance in all seismic zones due to its relatively high lateral strength in comparison to AM2.

Evaluation by Contrast-Enhanced MR Imaging of the Lateral Border Zone in Reperfused Myocardial Infarction in a Cat Model

  • Ae Kyung Jeong;Sang Il Choi;Dong Hun Kim;Sung Bin Park;Seoung Soo Lee;Seong Hoon Choi;Tae-Hwan Lim
    • Korean Journal of Radiology
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 2001
  • Objective: To identify and evaluate the lateral border zone by comparing the size and distribution of the abnormal signal area demonstrated by MR imaging with the infarct area revealed by pathological examination in a reperfused myocardial infarction cat model. Materials and Methods: In eight cats, the left anterior descending coronary artery was occluded for 90 minutes, and this was followed by 90 minutes of reperfusion. ECG-triggered breath-hold turbo spin-echo T2-weighted MR images were initially obtained along the short axis of the heart before the administration of contrast media. After the injection of Gadomer-17 and Gadophrin-2, contrast-enhanced T1-weighted MR images were obtained for three hours. The size of the abnormal signal area seen on each image was compared with that of the infarct area after TTC staining. To assess ultrastructural changes in the myocardium at the infarct area, lateral border zone and normal myocardium, electron microscopic examination was performed. Results: The high signal area seen on T2-weighted images and the enhanced area seen on Gadomer-17-enhanced T1WI were larger than the enhanced area on Gadophrin-2-enhanced T1WI and the infarct area revealed by TTC staining; the difference was expressed as a percentage of the size of the total left ventricle mass (T2= 39.2 %; Gadomer-17 =37.25 % vs Gadophrin-2 = 29.6 %; TTC staining = 28.2 %; p < 0.05). The ultrastructural changes seen at the lateral border zone were compatible with reversible myocardial damage. Conclusion: In a reperfused myocardial infarction cat model, the presence and size of the lateral border zone can be determined by means of Gadomer-17- and Gadophrin-2-enhanced MR imaging.

  • PDF

Comparison of displacement capacity of reinforced concrete columns with seismic codes

  • Cansiz, Sinan;Aydemir, Cem;Arslan, Guray
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.295-304
    • /
    • 2019
  • The lateral displacement or drift may be the cause of the damage in the reinforced concrete (RC) columns under the seismic load. In many regulations, lateral displacement was limited according to the properties of columns. The design displacement limits may be represented indirectly through the material strain limits and the mechanical properties of columns. EUROCODE-8 and FEMA356 calculate displacement limits by taking into account the mechanical properties of columns. However, Turkey Building Earthquake Code (TBEC) determine displacement limits by taking into account the material strain limits. The aim of this study is to assess the seismic design codes for RC columns through an experimental study. The estimates of seismic design codes have been compared with the experimental results. It is observed that the lateral displacement capacities of columns estimated according to some seismic codes are not in agreement with the experimental results. Also, it is observed that TBEC is conservative in the context of the performance indicator of RC columns, compared to EUROCODE-8 and FEMA356. Moreover, in this study, plastic hinge length and effective stiffness of test elements were investigated.

Comparison and prediction of seismic performance for shear walls composed with fiber reinforced concrete

  • Zhang, Hongmei;Chen, Zhiyuan
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2021
  • Concrete cracking due to brittle tension strength significantly prevents fully utilization of the materials for "flexural-shear failure" type shear walls. Theoretical and experimental studies applying fiber reinforced concrete (FRC) have achieved fruitful results in improving the seismic performance of "flexural-shear failure" reinforced concrete shear walls. To come to an understanding of an optimal design strategy and find common performance prediction method for design methodology in terms to FRC shear walls, seismic performance on shear walls with PVA and steel FRC at edge columns and plastic region are compared in this study. The seismic behavior including damage mode, lateral bearing capacity, deformation capacity, and energy dissipation capacity are analyzed on different fiber reinforcing strategies. The experimental comparison realized that the lateral strength and deformation capacity are significantly improved for the shear walls with PVA and steel FRC in the plastic region and PVA FRC in the edge columns; PVA FRC improves both in tensile crack prevention and shear tolerance while steel FRC shows enhancement mainly in shear resistance. Moreover, the tensile strength of the FRC are suggested to be considered, and the steel bars in the tension edge reaches the ultimate strength for the confinement of the FRC in the yield and maximum lateral bearing capacity prediction comparing with the model specified in provisions.

A Case of Amyotrophic Lateral Sclerosis (근 위축성 측삭 경화증 환자 1례 보고)

  • Kim, Tae-jung;Moon, A-ji;Lee, Seoung-geun;Lee, Key-sang
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.13 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • Amyotrophic lateral sclerosis(ALS) is a progressive disorder that causes degeneration of motor neurons of the brain and spinal cord. It is characterized by loss of motor neurons leading to muscle weakness, and sensation and mental function stay intact during the course of the disease. Diagnostic tests include magnetic response imaging(MRI), electromyogram(EMG), muscle biopsy, and blood tests. In order to a definitive diagnosis of ALS, damage must be evident in both upper and lower motor neurons. When three limbs are sufficiently affected, the diagnosis is ALS. There is no cure for ALS. We experienced one case of ALS, the patients was diagnosed as ALS by EMG and symptoms. We diagnosed her as ShinEumHur(SEH) and treated by Choakwiyeum(左歸飮). We report the change of her symptoms through oriental medical treatment.

  • PDF