• Title/Summary/Keyword: lateral confinement

Search Result 207, Processing Time 0.027 seconds

An Estimation Method of Settlement and the Behaviour Characteristics of Granular Compaction Pile Reinforced with Uniformly Graded Permeable Concrete (등입도 투수성 콘크리트 보강 조립토 다짐말뚝의 거동특성 및 침하량 평가기법)

  • Kim, Jeong-Ho;Kim, Seung-Wook;Kim, Hong-Taek;Hwang, Jeong-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.73-83
    • /
    • 2006
  • The behaviour characteristics of Granular Compaction Pile (GCP) are mainly governed by the lateral confining pressure mobilized in the soft soil matrix to restrain the bulging failure of the granular compaction pile. The GCP method is most effective in soft soil with undrained shear strength ranging $15{\sim}50kPa$. However, the efficiency of this method reduces the more compressible soil conditions, which does not provide sufficient lateral confinement. In the present study, the GCP method reinforced with uniformly graded permeable concrete is suggested for the extension of application to the soft ground. Also, large triaxial compression tests are conducted on composite-reinforced soil samples for verification of availability of the suggested method and the settlement estimation method of the reinforced GCP is proposed. Furthermore, for the verification of the proposed method, predicted settlements by the proposed method are compared with results of 3-dimensional numerical analyses. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

An Experimental Study on Punching Shear at the Connection of RC Column Constrained by H-Beam with 井 Shape (정(井)자형 H형강으로 구속된 철근콘크리트 기둥접합부의 뚫림전단에 관한 실험적 연구)

  • Kim, Lyang-Woon;Lee, Soo-Kueon;Lee, Jung-Yoon;Chung, Chang-Yong;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.319-326
    • /
    • 2009
  • Two parallel wide flange built-up beams are widely used as struts in resisting lateral earth pressure because of the effectiveness in structure and construction. In a certain structural system, the reinforced concrete columns are to be placed at the intersection where two perpendicular beams cross each other, the square part of the joint being filled with concrete. In the punching shear mechanism of the beam-column joint, the radial deformation caused due to shear cracking will be constrained by the spring action of the squarely encompassed beam flanges. As a result, the punching shear strength of the joint concrete can be expected to be increased. To verify this phenomenon experiments have been performed for various constraining elements and distances between columns and constraints. Test results are compared with the approximation analysis formula which has been proposed in this study, based on the code formula. The results calculated by the proposed equation show comparatively close agreement with the punching shear strength detected from the test.

Experimental Investigation on Seismic Performance of RC Circular Columns Strengthened Using Highly-Ductile PET-AF Fiber Strand (고연성 PET-AF 스트랜드로 외부 보강한 RC 원형 기둥의 내진 성능에 관한 실험적 연구)

  • Chinzorigt, Gombosuren;Kim, So-Young;Choi, Donguk;Lim, Myung-Kwan;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.56-66
    • /
    • 2017
  • In this study, seismic strengthening performance of RC circular columns reinforced with high ductile PET and hybridized fibers(HF, PET + aramid) strand was experimentally compared and investigated. As a result, the maximum flexural strength and ductility capacity of all reinforced columns were improved than control column and fiber rupture did not occur at the ultimate stage. In addition, the resistive strength and displacement of the PET sheet 25 layers reinforcing column and the HF strand 1 layer reinforcing column were almost similar, so that 1 layer of HF strand showed the same lateral confinement effect as the PET sheet 25 layers. As a result of this experimental study, PET is considered to be suitable as seismic reinforcement material for RC structures in terms of flexural strength and ductility. However, in order to increase the possibility of application in the field, it is necessary to use a prefabricated PET sheet such as HF used in this study. The durability of PET needs investigation in the future.

Cyclic Loading Test for Shear Strength of Low-rise RC Walls with Grade 550 MPa Bars (550 MPa 급 철근을 적용한 낮은 철근콘크리트 벽체의 전단강도를 위한 반복하중 실험)

  • Park, Hong-Gun;Lee, Jae-Hoon;Shin, Hyun-Mock;Baek, Jang-Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the construction of nuclear power plants using massive walls, the use of high-strength re-bars for shear design is necessary to enhance the constructability and economy. In this study, low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars were tested under cyclic loading to investigate the shear capacity and deformation capacity. The test parameters were the grade of horizontal re-bars (550 MPa, 420 MPa), strength of concrete compressive strength (46 MPa, 70 MPa), horizontal/vertical reinforcement ratio, use of lateral confinement hoops, shape of cross section, and failure modes (shear failure before or after flexural yielding). The test results were compared with those of walls with grade 420 MPa bars and predicted strength by current design codes. The results showed that the shear strength of the walls with 550 MPa bars was comparable to that of the walls with 420 MPa bars though the safe margin slightly decreased. ACI 349 provides underestimated shear strength for the walls with 550 MPa bars. In case of the wall with flexural yielding, a large deformation capacity was achieved. This result indicates that the ACI 349 provisions can be safely applied to seismic design of the low-rise walls (aspect ratio of 1.0) with grade 550 MPa bars.

Sedimentary Facies and Architecture of a Gigantic Gravelly Submarine Channel System in a Cretaceous Foredeep Trough (the Magallanes Basin, Southern Chile)

  • Sohn, Young Kwan;Jo, Hyung Rae;Woo, Jusun;Kim, Young-Hwan G.;Choe, Moon Young
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.85-106
    • /
    • 2017
  • The Lago Sofia conglomerate in southern Chile is a deep-marine gravelly deposit, which is hundreds of meters thick and kilometers wide and extends laterally for more than 100 km, filling the foredeep trough of the Cretaceous Magallanes Basin. For understanding the depositional processes and environments of this gigantic deep-sea conglomerate, detailed analyses on sedimentary facies, architecture and paleoflow patterns were carried out, highlighting the differences between the northern (Lago Pehoe and Lago Goic areas) and southern (Lago Sofia area) parts of the study area. The conglomerate bodies in the northern part occur as relatively thin (< 100 m thick), multiple units intervened by thick mudstone-dominated sequences. They show paleoflows toward ENE and S to SW, displaying a converging drainage pattern. In the southern part, the conglomerate bodies are vertically interconnected and form a thick (> 400 m thick) conglomerate sequence with rare intervening fine-grained deposits. Paleoflows are toward SW. The north-to-south variations are also distinct in sedimentary facies. The conglomerate bodies in the southern part are mainly composed of clast-supported conglomerate with sandy matrix, which is interpreted to be deposited from highly concentrated bedload layers under turbidity currents. Those in the northern part are dominated by matrix- to clast-supported conglomerate with muddy matrix, which is interpreted as the products of composite mass flows comprising a turbidity current, a gravelly hyperconcentrated flow and a mud-rich debris flow. All these characteristics suggest that the Lago Sofia conglomerate was formed in centripetally converging submarine channels, not in centrifugally diverging channels of submarine fans. The tributaries in the north were dominated by mass flows, probably affected by channel-bank failures or basin-marginal slope instability processes. In contrast, the trunk channel in the south was mostly filled by tractive processes, which resulted in the vertical and lateral accretion of gravel bars, deposition of gravel dunes and filling of scours and channels, similar to deposits of terrestrial gravel-bed rivers. The trunk channel developed along the axis of foredeep trough and its confinement within the trough is probably responsible for the thick, interconnected channel fills. The large-scale architecture of the trunk-channel fills shows an eastward offset stacking pattern, suggesting that the channel migrated eastwards most likely due to the uplift of the Andean Cordillera.

Axial Behavior of Reinforced Concrete Columns Externally Strengthened with Unbonded Wire Rope and T-Shaped Steel Plate (와이어로프와 T 강판으로 비부착 보강된 철근콘크리트 기둥의 중심 축하중 거동)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • An improved unbonded-type column strengthening procedure using wire rope and T-shaped steel plate units was proposed. Eight strengthened columns and an unstrengthened control column were tested under concentric axial load. The main variables considered were the volume ratio of wire rope and the flange width and configuration of T-shaped steel plates. Axial load capacity and ductility ratio of columns tested were compared with predictions obtained from the equation specified in ACI 318-05 and those of conventionally tied columns tested by Chung et al., respectively. In addition, a mathematical model was proposed to evaluate the complete stress-strain relationship of concrete confined by the wire rope and T-plate units. Test results showed that the axial load capacity and ductility of columns increased with the increase of the volume ratio of wire rope and the flange width of T-plates. In particular, at the same lateral reinforcement index, a much higher ductility ratio was observed in the strengthened columns having the volume ratio of wire rope above 0.0039 than in the tied columns. A mathematical model for the stress-strain relationship of confined concrete using the proposed strengthening procedure is developed. The predicted stress-strain curves were in good agreement with test results.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.