• 제목/요약/키워드: latent semantic feature

검색결과 12건 처리시간 0.018초

의미 기반 유전 알고리즘을 사용한 특징 선택 (Semantic-based Genetic Algorithm for Feature Selection)

  • 김정호;인주호;채수환
    • 인터넷정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.1-10
    • /
    • 2012
  • 본 논문은 문서 분류의 전처리 단계인 특징 선택을 위해 의미를 고려한 최적의 특징 선택 방법을 제안한다. 특징 선택은 불필요한 특징을 제거하고 분류에 필요한 특징을 추출하는 작업으로 분류 작업에서 매우 중요한 역할을 한다. 특징 선택 기법으로 특징의 의미를 파악하여 특징을 선택하는 LSA(Latent Semantic Analysis) 기법을 사용하지만 기본 LSA는 분류 작업에 특성화 된 기법이 아니므로 지도적 학습을 통해 분류에 적합하도록 개선된 지도적 LSA를 사용한다. 지도적 LSA를 통해 선택된 특징들로부터 최적화 기법인 유전 알고리즘을 사용하여 더 최적의 특징들을 추출한다. 마지막으로, 추출한 특징들로 분류할 문서를 표현하고 SVM (Support Vector Machine)을 이용한 특정 분류기를 사용하여 분류를 수행하였다. 지도적 LSA를 통해 의미를 고려하고 유전 알고리즘을 통해 최적의 특징 집합을 찾음으로써 높은 분류 성능과 효율성을 보일 것이라 가정하였다. 인터넷 뉴스 기사를 대상으로 분류 실험을 수행한 결과 적은 수의 특징들로 높은 분류 성능을 확인할 수 있었다.

Feature Extraction of Concepts by Independent Component Analysis

  • Chagnaa, Altangerel;Ock, Cheol-Young;Lee, Chang-Beom;Jaimai, Purev
    • Journal of Information Processing Systems
    • /
    • 제3권1호
    • /
    • pp.33-37
    • /
    • 2007
  • Semantic clustering is important to various fields in the modem information society. In this work we applied the Independent Component Analysis method to the extraction of the features of latent concepts. We used verb and object noun information and formulated a concept as a linear combination of verbs. The proposed method is shown to be suitable for our framework and it performs better than a hierarchical clustering in latent semantic space for finding out invisible information from the data.

지도적 잠재의미색인(LSI)기법을 이용한 의견 문서 자동 분류에 관한 실험적 연구 (An Experimental Study on Opinion Classification Using Supervised Latent Semantic Indexing(LSI))

  • 이지혜;정영미
    • 정보관리학회지
    • /
    • 제26권3호
    • /
    • pp.451-462
    • /
    • 2009
  • 본 연구에서는 의견이나 감정을 담고 있는 의견 문서들의 자동 분류 성능을 향상시키기 위하여 개념색인의 하나인 잠재의미색인 기법을 사용한 분류 실험을 수행하였다. 실험을 위해 수집한 1,000개의 의견 문서는 500개씩의 긍정 문서와 부정 문서를 포함한다. 의견 문서 텍스트의 형태소 분석을 통해 명사 형태의 내용어 집합과 용언, 부사, 어기로 구성되는 의견어 집합을 생성하였다. 각기 다른 자질 집합들을 대상으로 의견 문서를 분류한 결과 용어색인에서는 의견어 집합, 잠재의미색인에서는 내용어와 의견어를 통합한 집합, 지도적 잠재의미색인에서는 내용어 집합이 가장 좋은 성능을 보였다. 전체적으로 의견 문서의 자동 분류에서 용어색인 보다는 잠재의미색인 기법의 분류 성능이 더 좋았으며, 특히 지도적 잠재의미색인 기법을 사용할 경우 최고의 분류 성능을 보였다.

의미 벡터 확장을 통한 유전자 클러스터링 (Genetic Clustering with Semantic Vector Expansion)

  • 쏭웨이;박순철
    • 한국콘텐츠학회논문지
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 논문에서는 퍼지 논리 기반의 유전자 알고리즘(GA)과 의미 벡터 확장 기술을 이용한 문서 클러스터링 시스템을 제안한다. GA에 관련된 여러 논문에서 이미 알려졌듯이 GA알고리즘의 성공 여부는 군체의 다양성과 수렴하는 능력에 따라 결정된다. 이러한 두 인자 사이의 영향력을 조절하기 위하여 우리는 퍼지 논리 기반의 연산자를 사용한다. 전통적인 문서 클러스터링 알고리즘에서 문서를 나타내기 위한 가장 일반적이고 직선적인 방법은 벡터 공간 모델이다. 그러나 이 방법은 다차원 특징 공간의 원인이 될 뿐만 아니라, 클러스터링의 정확성에 영향을 미칠 수 있는, 단어 간의 의미상 관계성을 무시한다. 본 논문에서는 LSA를 사용하여 문서를 관련되는 의미상의 벡터 개념으로 확장시킨다. 또한 이것은 벡터의 크기를 크게 줄일 수 있다. 본 논문에서 제안한 클러스터링 알고리즘을 테스트하기 위하여 20개의 뉴스 그룹과 로이터 데이터를 사용했다. 제안된 방법은 문서를 표현하는 다양한 환경에서 일반적인 GA보다 더 나은 결과를 보여준다.

다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축 (Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents)

  • 장정호;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반 하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통 주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한문서 검색 실험에서는 다중요인모델의 분석결과에 기반 한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.

깊은 신경망에서 단일 중간층 연결을 통한 물체 분할 능력의 심층적 분석 (Investigating the Feature Collection for Semantic Segmentation via Single Skip Connection)

  • 임종화;손경아
    • 정보과학회 논문지
    • /
    • 제44권12호
    • /
    • pp.1282-1289
    • /
    • 2017
  • 최근 심층 컨볼루션 신경망을 활용한 이미지 분할과 물체 위치감지 연구가 활발히 진행되고 있다. 특히 네트워크의 최상위 단에서 추출한 특징 지도뿐만 아니라, 중간 은닉 층들에서 추출한 특징 지도를 활용하면 더욱 정확한 물체 감지를 수행할 수 있고 이에 대한 연구 또한 활발하게 진행되고 있다. 이에 밝혀진 경험적 특성 중 하나로 중간 은닉 층마다 추출되는 특징 지도는 각기 다른 특성을 가지고 있다는 것이다. 그러나 모델이 깊어질수록 가능한 중간 연결과 이용할 수 있는 중간 층 특징 지도가 많아지는 반면, 어떠한 중간 층 연결이 물체 분할에 더욱 효과적일지에 대한 연구는 미비한 상황이다. 또한 중간층 연결 방식 및 중간층의 특징 지도에 대한 정확한 분석 또한 부족한 상황이다. 따라서 본 연구에서 최신 깊은 신경망에서 중간층 연결의 특성을 파악하고, 어떠한 중간 층 연결이 물체 감지에 최적의 성능을 보이는지, 그리고 중간 층 연결마다 특징은 어떠한지 밝혀내고자 한다. 그리고 이전 방식에 비해 더 깊은 신경망을 활용하는 물체 분할의 방법과 중간 연결의 방향을 제시한다.

점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상 (Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm)

  • 장정호;이종우;엄재홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1045-1055
    • /
    • 2007
  • 잠재토픽모델(latent topic model)은 데이타에 내재된 특징적 패턴이나 데이타 정의 자질들 간의 상호 관련성을 확률적으로 모델링하고 자동 추출하는 모델로서 최근 텍스트 문서로부터의 의미 자질 자동 추출, 이미지를 비롯한 멀티미디어 데이타 분석, 생물정보학 분야 등에서 많이 응용되고 있다. 이러한 잠재토픽모델의 대규모 데이타에 대한 적용 시 그 효과 증대를 위한 중요한 이슈 중의 하나는 모델의 효율적 학습에 관한 것이다. 본 논문에서는 대표적 잠재토픽모델 중의 하나인 PLSA (probabilistic latent semantic analysis) 기법을 대상으로 점진적 EM 알고리즘을 활용한, 기본 EM 알고리즘 기반의 기존 학습에 대한 학습속도 증진 기법을 제안한다. 점진적 EM 알고리즘은 토픽 추론 시 전체 데이타에 대한 일괄적 E-step 대신에 일부 데이타에 대한 일련의 부분적 E-step을 수행하는 특징이 있으며 이전 데이터 일부에 대한 학습 결과를 바로 다음 데이타 학습에 반영함으로써 모델 학습의 가속화를 기대할 수 있다. 또한 이론적인 측면에서 지역해로의 수렴성이 보장되고 기존 알고리즘의 큰 수정 없이 구현이 용이하다는 장점이 있다. 논문에서는 해당 알고리즘의 기본적인 응용과 더불어 실제 적용과정 상에서의 가능한 데이터 분할법들을 제시하고 모델 학습 속도 개선 면에서의 성능을 실험적으로 비교 분석한다. 실세계 뉴스 문서 데이타에 대한 실험을 통해, 제안하는 기법이 기존 PLSA 학습 기법에 비해 유의미한 수준에서 학습 속도 증진을 달성할 수 있음을 보이며 추가적으로 모델의 병렬 학습 기법과의 조합을 통한 실험 결과를 간략히 제시한다.

선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법 (Optimal supervised LSA method using selective feature dimension reduction)

  • 김정호;김명규;차명훈;인주호;채수환
    • 감성과학
    • /
    • 제13권1호
    • /
    • pp.47-60
    • /
    • 2010
  • 기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.

  • PDF

잠재의미색인(LSI) 기법을 이용한 kNN 분류기의 자질 선정에 관한 연구 (Evaluation of the Feature Selection function of Latent Semantic Indexing(LSI) Using a kNN Classifier)

  • 박부영;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2004년도 제11회 학술대회 논문집
    • /
    • pp.163-166
    • /
    • 2004
  • 텍스트 범주화에 관한 선행연구에서 자주 사용되면서 좋은 성능을 보인 자질 선정 기법은 문헌빈도와 카이제곱 통계량 등이다. 그러나 이들은 단어 자체가 갖고 있는 모호성은 제거하지 못한다는 단점이 있다. 본 연구에서는 kNN 분류기를 이용한 범주화 실험에서 단어간의 상호 관련성이 자동적으로 유도됨으로써 단어 자체 보다는 단어의 개념을 분석하는 잠재의미색인 기법을 자질 선정 방법으로 제안한다.

  • PDF

Automatic extraction of similar poetry for study of literary texts: An experiment on Hindi poetry

  • Prakash, Amit;Singh, Niraj Kumar;Saha, Sujan Kumar
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.413-425
    • /
    • 2022
  • The study of literary texts is one of the earliest disciplines practiced around the globe. Poetry is artistic writing in which words are carefully chosen and arranged for their meaning, sound, and rhythm. Poetry usually has a broad and profound sense that makes it difficult to be interpreted even by humans. The essence of poetry is Rasa, which signifies mood or emotion. In this paper, we propose a poetry classification-based approach to automatically extract similar poems from a repository. Specifically, we perform a novel Rasa-based classification of Hindi poetry. For the task, we primarily used lexical features in a bag-of-words model trained using the support vector machine classifier. In the model, we employed Hindi WordNet, Latent Semantic Indexing, and Word2Vec-based neural word embedding. To extract the rich feature vectors, we prepared a repository containing 37 717 poems collected from various sources. We evaluated the performance of the system on a manually constructed dataset containing 945 Hindi poems. Experimental results demonstrated that the proposed model attained satisfactory performance.