• 제목/요약/키워드: latent heat effect

검색결과 147건 처리시간 0.029초

자동차용 열전지에서 유로배열 효과 예측을 위한 열유동 수치묘사 (A Numerical Simulation of Heat and Fluid Flow for Predicting the Effect of Passage Arrangement in Automotive Heat Battery)

  • 이관수;권재웅;백창인;송영길;한창섭;김동진
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.64-73
    • /
    • 1995
  • A numerical simulation of heat and fluid flow for predicting the effect of passage arrangement in automotive heat battery has been performed. The system is assumed to be a two-dimensional laminar flow and isothermal boundary is applied to the surface of the latent heat storage vessel. In the case of ideal heat battery the flow rate into each flow passage is evenly distributed. The various models are considered in the view of pressure drop and bulk temperature. The effects on the efficiency of the heat battery are examined by varying geometrical factors such as flow passage clearance, length of a inlet and outlet tank and the length of a latent heat storage vessel. The flow clearance is a very important -factor on the efficiency of a heat battery. As the flow passage clearance becomes narrow, the flow distribution becomes uniform and the bulk temperature increases, however the pressure drop is large. Therefore, optimal flow passage clearance has to be chosen. The present work can be used in optimizing heat battery efficiency.

  • PDF

잠열 축열-바이오 세라믹 온돌의 난방 특성 - 온돌의 역사적 고찰 및 실험적 분석을 중심으로 - (Floor Heating Characteristics of Latent Heat Storage-Bioceramic Ondal - Focused on Historical research and Expermental Analysis -)

  • 송현갑;유영선
    • 태양에너지
    • /
    • 제15권1호
    • /
    • pp.13-28
    • /
    • 1995
  • 온돌의 효시인 화덕은 바닥에 자갈을 깔고 그 위에 진흙을 덮었으며, 주위에 큰돌을 놓아 불을 피워 돌과 흙에 열을 저장하여 이용하였으며, 이는 열저장 측면에서 주시할만한 난방법이었다. 현재의 한국식 주거용 난방시설은 연탄, 석유 및 가스 보일러를 이용한 온수순환온돌로서 전통온돌에서 사용한 돌과 흙같은 축열매체가 사용되고 있지 않다. 축열매체를 사용하고 있지 않기 때문에 온돌바닥면과 난방공간과의 온도차가 심하게 되어 쾌적도가 떨어지므로 난방열을 지속적으로 공급해야 하는 어려움이 있다. 이와 같은 현재의 난방법을 개선기 위하여, 본 연구에서는 잠열축열재와 바이오세라믹으로 구성된 온돌을 개발하였고, 그 난방특성을 실험적으로 분석하였다.

  • PDF

스트론튬계 잠열재를 사용한 저발열 콘크리트의 현장적용 평가 (Field Application of Low Heat Concrete Using Strontium Hydroxide Based Latent Heat Material)

  • 길배수;윤현도;정옥란
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.218-226
    • /
    • 2011
  • 본 연구에서는 스트론튬계 잠열재를 사용한 저발열 콘크리트를 레미콘 배처플랜트에서 시험생산한 후 생산된 콘크리트의 기초성능 및 모의부재에 의한 수화온도 특성을 평가하였으며, 그 결과 스트론튬계 잠열재를 사용한 저발열 콘크리트의 현장적용 가능성을 확인하였다. 이후 스트론튬계 잠열재를 사용한 콘크리트를 실제 교각 건설현장에 적용하였으며, 적용부재에 대한 수화열 해석 및 타설 콘크리트의 성능평가 결과 수화열 및 온도균열 저감효과가 우수한 것으로 나타나, 향후 대형 매스콘크리트의 수화열 및 온도균열 저감대책으로서 활용이 기대된다.

잠열축열시스템의 축열과정에서 자연대류의 영향에 관한 연구 (Effect of Natural Convection on the Heat Transfer in a Latent Heat Storage System)

  • 유승남;한귀영
    • 태양에너지
    • /
    • 제19권2호
    • /
    • pp.29-36
    • /
    • 1999
  • Heat transfer characteristics of a low temperature latent heat storage system during the heat storage stage was examined for the circular finned tubes using fatty acid which shows the big density difference during melting as phase change materials. The heat storage vessel has the dimension of 530 mm height, 74 mm inside diameter and inner heat transfer tube is 480 mm in height and 13.5 mm outside diameter. Hot water was employed as the heat transfer fluid. During the heat storage stage, it was found that both conduction and natural convection were the major heat transfer mechanism. It was also found that the effect of natural convection on the heat transfer was more significant for the unfinned tube system than that for the finned tube system. The experimentally determined overall heat transfer coefficients were in the range of $50{\sim}250W/m^2K$ and the correlation for natural convection heat transfer as a function of Nusselt and Rayleigh number was proposed.

  • PDF

EVALUATION OF SURFACE HEAT FLUXES FOR DIFFERENT LAND COVER IN HEAT ISLAND EFFECT

  • Chang, Tzu-Yin;Liao, Lu-Wei;Liou, Yuei-An
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.68-71
    • /
    • 2008
  • Our goal is to obtain a better scientific understanding how to define the nature and role of remotely sensed land surface parameters and energy fluxes in the heat island phenomena, and local and regional weather and climate. By using the MODIS visible and thermal imagery data and analyzing the surface energy flux images associated with the change of the landcover and landuse in study area, we will estimate and present how significant is the magnitude of the heat island heat effect and its relation with the surface parameters and the energy fluxes in Taiwan. To achieve our objective, we used the energy budget components such as net radiation, soil heat flux, sensible heat flux, and latent heat flux in the study area of interest derived form remotely sensed data to understand the island heat effect. The result shows that the water is the most important component to decrease the temperature, and the more the consumed net radiation to latent heat, the lower urban surface temperature.

  • PDF

A New Method to Retrieve Sensible Heat and Latent Heat Fluxes from the Remote Sensing Data

  • Liou Yuei-An;Chen Yi-Ying;Chien Tzu-Chieh;Chang Tzu-Yin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.415-417
    • /
    • 2005
  • In order to retrieve the latent and sensible heat fluxes, high-resolution airborne imageries with visible, near infrared, and thermal infrared bands and ground-base meteorology measurements are utilized in this paper. The retrieval scheme is based on the balance of surface energy budget and momentum equations. There are three basic surface parameters including surface albedo $(\alpha)$, normalized difference vegetation index (NOVI) and surface kinetic temperature (TO). Lowtran 7 code is used to correct the atmosphere effect. The imageries were taken on 28 April and 5 May 2003. From the scattering plot of data set, we observed the extreme dry and wet pixels to derive the fitting of dry and wet controlled lines, respectively. Then the sensible heat and latent heat fluxes are derived from through a partitioning factor A. The retrieved latent and sensible heat fluxes are compared with in situ measurements, including eddy correlation and porometer measurements. It is shown that the retrieved fluxes from our scheme match with the measurements better than those derived from the S-SEBI model.

  • PDF

열펌프-잠열축열 시스템 온실에서 토양의 열저장 및 방열 특성 (Thermal Energy Storage and Release Characteristics of the Soil in the Greenhouse Equipped with Heat Pump and Latent Heat Storage System)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.39-44
    • /
    • 2002
  • In order to obtain the information of bio-environment control, the thermal characteristics of soil in the greenhouse heated by the heat pump and latent heat storage system were experimentally analyzed. The experimental systems were composed of the greenhouse with a heat pump and a latent heat storage system (system I), the greenhouse with a heat pump (system II), the greenhouse with a latent heat storage system (system III), and the greenhouse without auxiliary heating system (system IV). The thermal characteristics experimentally analyzed in each system were temperature of soil layers, soil heat storage and release, soil heat capacity and soil heat storage ratio. The results could be summarized as follows. 1. Time to reach the highest temperature at 20cm deep in soil layers of the crop routs in case of system I was shown to be delayed by 6 hours in comparison to the time of the highest temperature at the soil surface. 2. In the clear winter days, the stored heat capacity values fur the system I and the system II were shown to be 22.3% and 11.0% higher than the released heat capacity respectively, and the stored heat capacity values for the system III and the system IV were shown to be 6.2% and 29.6% lower than the released heat capacity respectively This confirms that the system I provided the best heat storage effect. j. The heat quantity values stored or released were shown to be highest at 5 cm depth of soil layers. And it was reduced with increasing of depth of soil layers until 20 cm and was not changed under the soil layer of 20 cm depth. 4. The heat absorption rates of soil, the ratio between supplied and stored heat energy, fur both the system I and system II were lower than 23%.

전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인 (MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER)

  • 김주한;유승문;박종연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

그린하우스 열환경 조절을 위한 파라핀계 화합물(CnH2n+2)의 잠열 축열 특성 (Latent Heat Storage Characteristics of Some Paraffins(CnH2n+2) for Thermal Environment Control of Greenhouse)

  • 송현갑;유영선
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.84-93
    • /
    • 1996
  • Several paraffins(CnH2n +2) can be used as the thermal energy storage medium because of their large amount of latent heat and their flexibility of phase change temperature. But they have not been used in the thermal energy storage system because their long term stability have not been verified. Paraffins(CnH2n+2) which the values of n are 23, 24, 26 and 28 were selected for this experimental research. And this research was peformed to apply them to the practical systems. The results were summarized as follows. (1) The increase of phase change cycles had no effect on their phase change temperatures. (2) According as the values of n increased from 23 to 28, the specific heats of paraffins(CnH2n+2) increased, and were in the range of 0.47 0.75 ㎉/$kg^circ C$. (3) Thermal conductivities of them were in the range of 0.14 0.17 W/$m^circ C$. and specific gravities of them were in the range of 765800 kg/m3. (4) The density of paraffins was in the range of 765 800 kg/$m^circ C$ , and the density of solid phase was larger than that of liquid phase. (5) When the number of phase change cycles was 1, 500 cycles, the latent heat of paraffins was 90% of the initial value.

  • PDF

2016년 1월 23일~25일에 발생한 서해안 대설 발달 메커니즘 분석 (Analysis of the West Coast Heavy Snowfall Development Mechanism from 23 to 25 January 2016)

  • 이재근;민기홍
    • 대기
    • /
    • 제28권1호
    • /
    • pp.53-67
    • /
    • 2018
  • This study examined the lake effect of the Yellow Sea which was induced by the Siberian High pressure system moving over the open waters. The development mechanism of the convective cells over the ocean was studied in detail using the Weather Research and Forecasting model. Numerical experiments consist of the control experiment (CTL) and an experiment changing the yellow sea to dry land (EXP). The CTL simulation result showed distinct high area of relative vorticity, convergence and low-level atmospheric instability than that of the EXP. The result indicates that large surface vorticity and convergence induced vertical motion and low level instability over the ocean when the arctic Siberian air mass moved south over the Yellow Sea. The sensible heat flux at the sea surface gradually decreased while latent heat flux gradually increased. At the beginning stage of air mass modification, sensible heat was the main energy source for convective cell generation. However, in the later stage, latent heat became the main energy source for the development of convective cells. In conclusion, the mechanism of the west coast heavy snowfall caused by modification of the Siberian air mass over the Yellow Sea can be explained by air-sea interaction instability in the following order: (a) cyclonic vorticity caused by diabatic heating induce Ekman pumping and convergence at the surface, (b) sensible heat at the sea surface produce convection, and (c) this leads to latent heat release, and the development of convective cells. The overall process is a manifestation of air-sea interaction and enhancement of convection from positive feedback mechanism.