• Title/Summary/Keyword: lasers

Search Result 892, Processing Time 0.026 seconds

Design of 850 nm Vertical-Cavity Surface-Emitting Lasers by Using a Transfer Matrix Method (전달 행렬 방법을 이용한 850 nm수직 공진기 레이저 구조의 최적설계)

  • Kim Tae-Yong;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In comparison with edge-emitting lasers(EELs), predicting the output power and slope efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the absorption loss in DBR layers. However, by using transfer matrix method(TMM), we've made possible to calculate such parameters of multi-layer structures like VCSELs. In this paper, we've calculated the threshold gain, threshold current and slope efficiency through the methodology based on TMM. Also TMM is the way of customizing the VCSEL structure for the desired threshold current and slope efficiency by changing the number of DBR mirror layers.

Development of Ejector System for Chemical Lasers Operating (I) - Design Parameter Study of Supersonic Ejector for Chemical Lasers Operating - (화학레이저 구동용 이젝터 시스템 개발 (I) - 화학레이저 구동용 초음속 이젝터 설계 변수 연구 -)

  • Kim, Se-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1673-1680
    • /
    • 2003
  • It is essential to operate chemical lasers with supersonic ejector system as the laser output power goes up. In this research, ejector design parameter study was carried out for optimal ejector design through understanding the ejector characteristics and design requirements for chemical lasers operating. Designed ejector was 3D annular type with 2$^{nd}$ -throat geometry and pressurized air was used for primary flow. Ejector design was carried out with two steps, quasi-1D gas dynamics was used for first design and commercial code was used to verify the first design. In this study, to get the effect of ejector geometry on its performance, three cases of primary nozzle area ratio and 2$^{nd}$ -throat cross sectional area and two cases of 2$^{nd}$ -throat L/D ratio experiments were carried out. Primary and secondary pressures were measured to get the mass flow rate ratio, minimum secondary pressure, ejector starting pressure and unstarting pressure at every case. In the result, better performance than design level was shown and optimal ejector design method for chemical lasers was obtained.

High-power fiber laser cutting parameter optimization for nuclear Decommissioning

  • Lopez, Ana Beatriz;Assuncao, Eurico;Quintino, Luisa;Blackburn, Jonathan;Khan, Ali
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.865-872
    • /
    • 2017
  • For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position), to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of $CO_2$ and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

Circuit Models for Low Frequency Modulation Characteristics of Semiconductor Lasers (반도체 레이저의 저주파 변조특성의 회로 모델)

  • 소준호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.214-217
    • /
    • 1989
  • The most attractive feature of semiconductor lasers as sources for coherent optical communication system is the ability to produce frequency modulation by modulation of the bias current. The frequency deviation of semiconductor lasers under direct modulation depends on the laser structure and modulation frequency. This paper describes a circuit modeling techniques for the directly frequency modulated CSP (Channeled Substrated Planner) semiconductor laser. Predictions from this model are compared with the other published results of sinusoidal frequency modulation below than 1 GHz.

  • PDF

Spectroscopic Applications of Ultrashort Pulse Lasers (극초단 펄스레이저의 분광학 응용)

  • 김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.87-97
    • /
    • 1990
  • With the recent advent of various ultrashort pulse lasers, time-resolved laser spectroscopic techniques have been widely recognized as versatile tools to study ultrafast phenomena in many research areas. These techniques are currently being employed not only to study atomic and molecular physics but to characterize the excited state or the carrier dynamics on surfaces of semiconductors, metals and thin layer materials. Also the sweetching speed measurement of ultrafast electro-optic devices using ultrashort laser pulses becomes important in high-speed electronics. Here, some principles of spectroscopic techniques with ps or fs lasers and their applications are summarized briefly.

  • PDF

Nonlinear Dynamics of Orthogonally Polarized Dual-mode Solid-state lasers (서로 수직으로 편광된 이중 모드 고체레이저에 대한 동력학)

  • Park, Jong-Dae;Cho, Chang-Ho
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • There are two relaxation frequencies in orthogonally polarized dual-mode solid-state lasers. Complex dynamic behaviors such as chaos can be observed by modulating orthogonally polarized dual-mode solid-state lasers. In this paper, we derived Maxwell-Bloch equations by considering anisotropy explicitly in laser-atom interactions and explained the complex nonlinear dynamical behaviors.

  • PDF

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Fabrication of 1.55.mu.m RWG DFB lasers (1.55.mu.m RWG-DFB 레이저 제작에 관한 연구)

  • 김중연;강명구;전현성;오환술
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.469-472
    • /
    • 1998
  • InGaAsP/InP ridge waveguide(RWG) distributed feedback(DFB) lasers (LD) operating at 1.55.mu.m were fabricated by a two step MOCVD process. The CW laser threshold and the slope efficiency from these lasers are 22.5mA and 0.127mW/MA perfacet at room temperature. Single longitudinal mode operation with side mode suppression of more than 30dB is obtained at 5mW. The temperature sensitivity and characteristic temperature (T$_{0}$) from DFB lasers were obtained 1.0.angs./.deg. C and 50.3K between 20.deg. C and 70.deg. C, respectively.y.

  • PDF

The treatment of peri-implantitis using various types of lasers (다양한 Laser를 이용한 Peri-Implantitis의 치료)

  • You, Jae-Seek;Kim, Su-Gwan;Ahn, Jong-Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.12
    • /
    • pp.906-909
    • /
    • 2015
  • Peri-implantitis is the inflammatory process, such as edema, bleeding, pus, of the mucosa surrounding dental implants. As the symptoms become severe, the surrounding bone is absorbed causing the implant surface to be exposed. Clinicians treat periimplantitis in various ways since a gold standard for the treatment of peri-implantitis has not been established. Various treatment methods include mechanical, chemical surface treatment and surgical excision, and recently decontamination of the implant surface using various types of lasers has been proposed. Thus, this study reviews the types of lasers and its effects that can be used for the treatment of peri-implantitis.

High Power Lasers and Their New Applications

  • Izawa, Yasukazu;Miyanaga, Noriaki;Kawanaka, Junji;Yamakawa, Koichi
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Recent progress in high power lasers enables us to access a regime of high-energy-density and/or ultra-strong fields that was not accessible before, opening up a fundamentally new physical domain which includes laboratory astrophysics and laser nuclear physics. In this article, new applications of high-energy and ultra-intense laser will be reviewed.