• Title/Summary/Keyword: laser welding speed

Search Result 253, Processing Time 0.02 seconds

Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function (레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발)

  • Park, Young-Whan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Inspection of Weld Bead using High Speed Laser Vision Sensor

  • Lee, H.;Ahn, S.;Sung, K.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.53-59
    • /
    • 2003
  • Visual inspection using laser vision sensor was proposed for fast and economic inspection and was verified experimentally. Welding is one of the most important manufacturing processes for automotive and electronics industries as well as heavy industries. The weld zone influences the reliability of the products. There are two kinds of weld inspection tests, destructive and non­destructive test. Even though the destructive test is much more reliable, the product should be destroyed, and hence the non­destructive test such as ultrasonic or X­ray test was used to overcome this problem. However, these tests are not used for real time inspection.

  • PDF

Analysis on behavior of keyhole and plasma using photodiode in laser welding of aluminum 6000 alloy (포토 다이오드를 이용한 6000계열 알루미늄 합금의 레이저 용접에서 키홀 및 플라즈마의 거동 해석)

  • Park Y. W.;Park H. S.;Rhee S. H.
    • Laser Solutions
    • /
    • v.7 no.3
    • /
    • pp.11-24
    • /
    • 2004
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to apply light materials such as aluminum to car body. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand behavior of plasma and keyhole in order to improve weld quality and monitor the weld state. In this study, spectral analysis was carried out to verify the spectrum for plasma which is generated in laser welding of A 6000 aluminum alloy. Two photodiodes which cover the range of plasma wavelength was used to measure light emission during laser welding according to assist gas flow rate and welding speed. Analysis of relationship between sensor signals of welding variables and formation of keyhole and plasma is performed. To determine the level of significance, analysis of variation (ANOVA) was carried out.

  • PDF

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

Welding characteristics of Dissimilar Metal by High Power Laser (고출력 레이저에 의한 이종금속 용접특성)

  • 신호준;유영태;임기건;안동규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.250-256
    • /
    • 2004
  • For many years and primarily for economical reasons, Dissimilar Metal Welds have been used as transition joints in a variety of equipment and applications. But Dissimilar Metal Welds have several fabrication and metallurgical drawbacks that can often lead to in-service failures. In this paper, the laser weldability of STS304 stainless steel and SM45C at dissimilar metal welds using a continuous wave Nd:YAG laser are experimentally investigated. An experimental study was conducted to determine effects of welding parameters, on eliminating or reducing the extent welding zone formation at dissimilar metal welds and to optimize those parameters that have the most influence parameters such as focus length, power, beam speed, shielding gas, and wave length of laser were tested.

  • PDF

Study on the welding characteristic of aluminum laser weld using filler wire (용가 와이어를 이용한 알루미늄 레이저 용접부의 용접 특성에 관한 연구)

  • Park, Young-Whan;Park, Hyunsung;Rhee, Sehun
    • Laser Solutions
    • /
    • v.8 no.3
    • /
    • pp.11-19
    • /
    • 2005
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to adopt light materials such as aluminum alloy to production line. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand weld characteristic according to welding condition in order to determine the possibility of application to car body. In this study, Nd:YAG laser welding of 5182 aluminum alloy with filler wire AA5356 was carried out through experimental design according to wire feed rate, laser power and welding speed. Weld bead shape in terms of cross section photo, bead with, height of reinforcement and penetration depth and mechanical property in terms of tensile strength and formability was investigated. Analysis of variation (ANOVA) was performed to know the effect of weld parameter for weldability, laser power was statistically most significance factor of three variables.

  • PDF

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

Welding behavior between Zn-coated steel plate and free cutting carbon steel rod by Nd:YAG laser beam (Nd:YAG 레이저빔을 이용한 아연도금강판(SECC)과 쾌삭강봉(SUM24L)의 용접에 관한 연구)

  • 노영태;김병철;김도훈;윤갑식
    • Laser Solutions
    • /
    • v.4 no.3
    • /
    • pp.30-39
    • /
    • 2001
  • This work was tamed out to apply a laser welding technique in joining between a Zn coated low carbon steel plate(SECC) and a free cutting carbon steel shaft(SUM24L) with or without W coating. Experiments were carried out and analysed by applying the FD(factorial design)method to obtain the optimum Laser welding condition. Optical microscopy, SEM, TEM and XRD analyses were performed in order to observe the microstructures in the fusion zone and the HAZ. Mechanical properties of the welded specimens were examined by microhardness test, tensile test and twist test. There was no flawed Zn in the fusion zone by EDS analysis. This means that during the welding process, Zn gas could be eliminated by appropriate shielding gas flow rate and butt welding gap. Ni coating itself did not influence on the tensile strength and hardness. However, twist bending strength and the weld depth of the Ni-coated free cutting carbon steel were lower as compared with those of the uncoated free cutting carbon steel. It was attributed to a lower absorbance of laser beam to the shin Ni surface. According to the results of the factorial design tests, the twist bending strength of welded specimens was primarily affected by pulse width, laser power, frequency and speed.

  • PDF

$CO_2$ Laser Beam Welding and Formability of Steel Plates with Different Thicknesses (이종두께 강판의 $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Kim, J.O.;Lee, Y.S.
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 1996
  • The maximum butt-joint gap size in $CO_2$ laser beam welding of SAPH steel plates with different thicknesses and its bending formability were studied. In the range of the gap size$\geq$0.1mm, the optimal butt welding speed was faster than that of no gap (air gap) condition. This behaviour was independent on the difference of thickness at any combination. Also, the allowable gap size in steel plates with different thicknesses was larger than with same thicknesses. In the range of $T/T_0$(bead shape) $\geq$ 0.8, good bending formability was obtained at any combination of thickness. The formability was improved by reducing the hardness in weld bead using pre-heating process. Finally, FEM result of the laser beam welded underframe with different thicknesses was compared to that of the conventional spot welded underframe.

  • PDF

Effect of Process Parameters on Bead Formation in Nd:YAG Laser Welding of Thin Steels (저탄소 박판 강재의 Nd:YAG 레이저 용접부 형성에 미치는 공정변수의 영향)

  • 김기철;허재협
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.317-324
    • /
    • 2001
  • This study deals with high power Nd:YAG laser welding of thin steels for small pressure vessels. Full penetration welding at the overlap joint was performed so as to assure sufficient weld strength. Results showed that mid-depth weld size reduced drastically with increasing the travel speed. Position of focus had little effect on the bead formation even though short focal system was used. However, the shape factor and the bead width had closely related with the position of focus. Based on the microstructural inspection, acceptable weld was obtained when the overlap clearance was controlled up to 20% of the base metal thickness. In the case that the joint contained more clearance than the critical value, both the tensile shear strength and the tear strength were reduced. Results also demonstrated that shielding gases were proved to play a key role as far as the bead formation characteristics was taken into consideration. Blowing dry air through 5mm in diameter nozzle produced narrower bead cross-section than that of argon or nitrogen shielding.

  • PDF