• Title/Summary/Keyword: laser surface treatment

Search Result 328, Processing Time 0.033 seconds

Laser Copper Patterning by wettability improvement of Silicon (레이저에 의한 실리콘 표면의 습윤성 향상과 구리 패터닝)

  • Kim, Dong-Yung;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1080-1083
    • /
    • 2002
  • In this paper, we have studied with regard to the use of lasers for modifying the surface properties of silicon in order to improve it's wettability and adhesion characteristics. Using an Nd:YAG pulse laser, the wettability and adhesion characteristics of silicon surface have been developed by an Nd:YAG pulse laser. It was found that the laser treatment of silicon surfaces modified the surface energy. In the result of wetting experiments, by the sessile drop technique using the distilled water, wetting characteristic of silicon after the laser irradiation shows a decreased value of the contact angle. In case of the laser treated silicon surface, laser direct writing of copper lines has been achieved by pyrolytic decomposition of copper formate films$(Cu(HCOO)_2{\cdot}4H_2Q)$, using a focused $Ar^+$ laser beam$(\lambda=514.5nm)$ on the silicon substrates. The deposited patterns were measured by energy dispersive X-ray(EDX), Scanning Electron Microscopy(SEM) and surface profiler($\alpha$-step) to examine the cross section of deposited copper lines and linewidth.

  • PDF

EFFECT OF LASER IRRADIATION ON DENTIN SURFACE STRUCTURE AND SHEAR BOND STRENGTH OF LIGHT-CURED GLASS IONOMER. (상아질 표면 구조와 광중합형 글라스 아이오노머의 전단강도에 대한 레이저 조사의 효과)

  • Park, Mi-Ryoung;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.76-92
    • /
    • 1998
  • The purpose of this study was to evaluate the possible efficacy of Nd-YAG laser as a dentin conditioner by observing the laser irradiation dentin surface under scanning electron micrograph and measuring shear bond strength of restored light-cured glass ionomer mold. Fifty intact premolars were prepared for shear bond strength tests. The teeth were randomly divided into five groups as follows; Group I. no treatment Group II. 10% poly acrylic acid, 20 sec Group III. laser treatment 2 w, 20 Hz, 2 sec Group IV. laser treatment 2 w, 20 Hz, 5 sec Group V. laser treatment 2 w, 20 Hz, 10 sec Samples of each group were restored with light-cured glass ionomer cement after dentin conditioning and then measuring the shear bond strength of each specimen were measured using universal testing machine. Additional ten premolars were prepared for SEM analysis The result from the this study can be summarized as follows. 1. Shear bond strength of polyacrylic acid-treated group (II) was significantly higher than other groups (p<0.05). 2. No statistically significant difference could be found between three laser-treated groups (III, IV, V) in shear bond strength(p>0.05) 3. According to the result of observation under SEM, Polyacrylic acid was shown to have removed the smear layer effectively and opened the dentinal tubules, whereas the laser has produced the irregular surface mainly composed of melted and fused structure. The microcracks found in laser-treated groups increased in number with irradiation time and formed the regular mesh-type in 10 sec-irradiation group. 4. The ultrastructural change of dentin surface created by laser irradiation was found to the improper for bonding of the glass ionomer restorative materials. And the lower shear bond strength of laser irradiated group might have been due to the failure to form the suit able dentin surface for the glass ionomer to penetrated into and form the proper micromechanical retention.

  • PDF

TiN Surface-Alloying of Ti-6Al-4V Alloy by CO2 Laser (CO2 레이저에 의한 Ti-6Al-4V 합금(合金)의 TiN 표면합금화(表面合金化))

  • Park, S.D.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ti-6Al-4V alloy are widely used in chemical and aircraft industries for their good corrosion resistance and high strength to weight ratio. Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN surface-alloyed layer with high hardness on the substrate very simplely by injecting reaction gas($N_2$) into a laser-generated melt pool and adjust the hardness to the specific requirements of the individual application by changing of laser processing parameters. This research has been investigated the effect of such parameters on TiN surface-alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum hardness of TiN surface-alloyed zone waw obtained by injecting 100% $N_2$ gas and it was decreased as the amount of $N_2$ gas in Ar and $N_2$ gas mixture was decreased. As scanning speed was increased, the hardness and depth of TiN surface-alloyed zone was decreased at constant laser power. The surface hardness after double scanning laser treatment is higher than that of single scanning. At constant laser power, the surface roughness is increased after the surface alloying if laser scanning speed is decreased.

  • PDF

SCANNING ELECTRON MICROSCOPIC STUDY OF IMPLANT SURFACE AFTER Er,Cr:YSGG LASER IRRADIATION (Er,Cr:YSGG 레이저를 조사한 임플란트 표면의 주사전자현미경적 연구)

  • Jo, Pil-Kwy;Min, Seung-Ki;Kwon, Kyung-Hwan;Kim, Young-Jo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.454-469
    • /
    • 2006
  • Today, there is considerable evidence to support a cause-effect relationship between microbial colonization and the pathogenesis of implant failures. The presence of bacteria on implant surfaces may result in an inflammation of the peri-implant mucosa, and, if left untreated, it may lead to a progressive destruction of alveolar bone supporting the implant, which has been named as peri-impantitis. Several maintenance regimens and treatment strategies for failing implants have been suggested. Recently, in addition to these conventional tools, the use of different laser systems has also been proposed for treatment of peri-implant infections. As lasers can perform excellent tissue ablation with high bactericidal and detoxification effects, they are expected to be one of the most promising new technical modalities for treatment of failing implants. It is introduced that Er,Cr:YSGG laser, operating at 2780nm, ablates tissue by a hydrokinetic process that prevents temperature rise. We studied the change of the titanium implant surface under scanning electron microscopy after using Er,Cr:YSGG laser at various energies, irradiation time. In this study, Er,Cr:YSGG laser irradiation of implant fixture showed different effects according to implant surface. Er,Cr:YSGG laser in TPS surface with RBM not alter the implant surface under power setting of 4 Watt(W) and irradiation time of 30sec. But in TPS surface with $Ca_3P$ coating alter above power setting of 2W and irradiation time of 10sec. TPS surface with RBM showed microfracture in 4W, 30sec and TPS surface with $Ca_3P$ coating showed destruction of fine crystalline structure, melting in excess of 2W, 10sec. We concluded that proper power setting, air, water of each implant surface must be investigated and implant surface must be irradiated under the damaged extent.

Characteristics of Surface Hardened Press Die Materials by CO2 Laser Beam Irradiation (CO2 레이저 빔 조사에 의한 프레스 금형재료의 표면경화 특성)

  • Yang, Se-Young;Choi, Seong-Dae;Choi, Myeong-Soo;Jun, Jae-Mok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently, the technology of surface treatment is being more important which affects the material cost reduction and substitution to the expensive material. The material used for the mechanical processing should have not only high intensity, but also strength toughness, wear resistance and corrosion resistance. In order to increase the durability and have better quality of the parts using such kind of tooling material, various kinds of research of the surface hardening through many kinds of heat resources is being done and practically applied. In this study, the characteristics of hardening surface zone for high strength of the press die material through laser beam irradiation are researched. In this study, it is experimentally observed by the status of the surface morphology, tensile strength, the hardness distribution of the base metal and wear condition by the surface hardness pattern by the laser beam based on the process parameters of $CO_2$ laser by using SM45C and STD11 used for press tool. Through this research, the characteristics of surface hardened zone for high strength of the thin metal by laser beam irradiation is done.

Surface Hardening of SM45C Steel by CO2 Laser (CO2 레이저를 이용한 SM45C 강의 표면경화)

  • Park, J.S.;Lee, O.Y.;Song, K.H.;Han, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • The specimen for laser hardening have been carried out using SM45C which is coated with black paint or graphite for better absorption. Segmented mirror was used in order to produce a square beam ($10{\times}10mm$) at the surface with a homegeneous intensity distribution across the beam. $CO_2$-Laser power was changed from 2kW to 4kW and transfer velocity was varied from 0.1m/min to 2.0m/min. The maximum hardness and case depth of SM45C steel are 790Hv and 1.5mm by laser hardening. When the surface of specimens was melted during laser hardening. the surface hardness of SM45C steel was decreased. The surface hardness of 2 layer coated specimen(black paint: $15.4{\mu}m$, graphite coating: $9.5{\mu}m$) was increased than that of 1 layer coated specimen. It is desirable to prepare 2 or more coating layer on the steel surface in order to sufficient case depth and hardness in laser hardening. The graphite coating on the specimen surface was obtained more uniform temperature distribution than black paint coating in laser hardening process.

  • PDF

The SEM and SPM Study on the Change of Machined Titanium Implant Surface following Various Laser Treatments (수종의 레이저로 임프란트 표면 처리 시 표면 형태의 변화에 대한 주사전자 및 주사탐침 현미경적 연구)

  • Kim, In-Kyung;Chung, Chin-Hyung;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.2
    • /
    • pp.451-463
    • /
    • 2001
  • Following the extensive use of implant, the incidence of peri-implantitis increases. Guided bone regeneration has been used for the optimal treatment of this disease. Because implant surface was contaminated with plaque and calculus, cleaning and detoxification were needed for the reosseointegration when guided bone regeneration was performed. Various mechanical and chemical methods have been used for cleaning and detoxification of implant surface, air-powder abrasive and oversaturated citrate were known to be most effective among these methods. However, these methods were incomplete because these could not thoroughly remove bacteria of implant surface, moreover deformed implant surface. Recent studies for detoxification of the implant surface using laser were going on, $CO_2$ laser and Soft Diode laser were known to be effective among these methods. The purpose of this study was to obtain clinical guide by application these laser to implant surface. 15 experimental machined pure titanium cylinder models were fabricated. The $CO_2$ laser treatment under dry, wet and hydrogen peroxide condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of models. Each groups were examined with SPM and SEM to know whether their surface was changed. The results were as follows : 1. Surface roughness and surface form weren't changed when $CO_2$ laser was usedunder dry condition(P>0.05). 2. Surface roughness and surface form weren't changed when $CO_2$ laser was used under wet condition(P>0.05). 3. Surface roughness and surface form weren't changed when $CO_2$ laser was used under hydrogen peroxide condition(P>0.05). 4. Surface roughness and surface form weren't changed when Soft Diode laser was used under toluidine blue O solution condition(P>0.05). From the result of this study, it may be concluded that the $CO_2$ laser having relatively safe pulse mode and the Soft Diode laser used with photosensitizer can be used safely to treat peri-implantitis.

  • PDF

Controlling hydrophilic and hydrophobic properties of titanium bone fixation plates using femtosecond laser surface treatment (펨토초 레이저 표면처리 기술을 이용한 골절합용 티타늄 플레이트의 친·소수 특성 제어 연구)

  • Hun-Kook Choi;Young-Jun Jung;Hyeongdo Jeong;Seungpyo Kim;Daeseon Moon;Harim Song;Ik-Bu Sohn
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.4
    • /
    • pp.306-316
    • /
    • 2024
  • We conducted experiments to control the hydrophilic/hydrophobic properties by adjusting line and grid patterns on the surface of medical bone fixation plates using a femtosecond laser. Basic experiments were conducted using pure titanium and titanium alloy (6% alumina, 4% vanadium). The spacing of the line and grid patterns was adjusted, and surface properties were confirmed using contact angle measurement equipment. We demonstrated the feasibility of controlling hydrophilic/hydrophobic properties through the patterns of lines and grids. Based on the results of the basic experiments, surface treatment was applied to medical bone fixation plates currently used in clinical practice. Through laser processing, we confirmed a contact angle of approximately 9.18° for hydrophilicity and approximately 101.07° for hydrophobicity. We confirmed that easy control of hydrophilic/hydrophobic properties is achievable using laser processing technology and anticipate its application in various medical component fields.

TiN and TiC Gas Alloying of Ti-6Al-4V Alloy by CO2 Laser (CO2 레이저를 이용한 Ti-6Al-4V합금의 TiN 및 TiC 가스 합금화)

  • Song, K.H.;Lee, O.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.177-186
    • /
    • 1996
  • Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN or TiC surface-alloyed layer with high hardness on the substrate by injecting reaction gas($N_2$ or $CH_4$). Laser surface alloying by means of process control is in many applications essential in order to obtain predictable hardening layer. This research has been investigated the effect of such parameters on TiN and TiC gas alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum surface hardness of TiN layer was obtained 1750Hv on the conditions of 0.8kW laser power, 0.8m/min scanning speed and 100% $N_2$ atmosphere. However, the maximum hardness of TiC formation layer after laser treatment was about 630Hv. As scanning speed was increased, the hardness and depth of these layers were decreased at constant laser power.

  • PDF

Effect of Laser Surface Modification of Cemented Carbide Substrates on the Adhesion of Diamond Films (Cemented Carbide기판의 레이저 표면 개질이 다이아몬드 박막의 접합력에 미치는 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.170-176
    • /
    • 2000
  • A novel method for improving the adhesion of diamond films on cemented carbide tool inserts has been investigated. This method is based on the formation of a compositionally graded interface by developing a microrough surface structure using a pulsed laser process. Residual stresses of diamond films deposited on laser modified cemented carbides were measured as a function of substrate roughness using micro-Raman spectroscopy. The surface morphology and roughness of diamond films and cemented carbides were also investigated at different laser modification conditions. It was found that the increasing interface roughness reduced the average residual stress of diamond films, resulting in improved adhesion of diamond films on cemented carbides.

  • PDF