• 제목/요약/키워드: laser surface texturing(LST)

검색결과 13건 처리시간 0.033초

Tribological performance of the laser surface treated CrZrSiN thin films

  • Kim, DongJun;La, JoungHyun;Lee, SangYul
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.141-142
    • /
    • 2012
  • Recently, surface texturing by atmospheric laser processing has been received lots of attention to improve the tribological performance of various surfaces and this laser texturing of surfaces could be considered in a large extent to improve tribological performance of PVD coated surface. Surface texturing could be performed by various manufacturing techniques such as indentation with hard materials, ion etching, abrasive jet machining, lithography, and Laser Surface Texturing (LST). Out of all these techniques, however it is generally accepted that laser surface texturing (LST) by atmospheric laser processing offers the most promising process as LST is very fast, environmentally-friendly, easy to control the shape and size of the microdimples. In this work various preliminary experimental results from the laser texturing on the PVD-coated steel substrate will be presented. Our results indicated that laser texturing definitely affect the tribological performance of the surfaces and the size as well as pattern type of laser texturing are one of the key factors. From the wear tests against an alumina counterpart ball at room temperature under oil-lubricated condition, laser surface texturing on the CrZrSiN films reduced the friction coefficients by approximately more than 5 times in the case of narrow patterned surfaces.

  • PDF

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.

윤활영역에서 멀티크기 Laser Surface Texturing 효과 (Improvement of Tribological Characteristics of Multi-Scale Laser-Textured Surface in terms of Lubrication Regime)

  • 김종형;최시근;다윗제네베세구;정용섭;김석삼
    • Tribology and Lubricants
    • /
    • 제30권1호
    • /
    • pp.59-63
    • /
    • 2014
  • Laser Surface Texturing(LST) is a surface engineering process used to improve tribological characteristics of materials by creating patterned microstructures on the mechanical contact surface. In LST technology, a pulsated laser beam is used to create arranged dimples on a surface by a material ablation process, which can improve such as load capacity, wear resistances, lubrication lifetime, and reduce friction coefficients. In the present study, the effect of multi-scale LST on lubricant regime was investigated. A pulsed Nd:YAG laser was applied on the bearing steel(AISI 52100) to create arranged dimples. To optimize the surface texturing effect on friction, multi-scale texture dimples with some specific formula arrays were fabricated by combining circles, ellipses and the laser ablation process. The tribological testing of multi-scale textured surface was performed by a flat-on-flat unidirectional tribometer under lubrication and the results compared with that of the non-textured surface. Through an increase in sliding speed, the beneficial effect of multi-scale LST performance was achieved. The multi-scale textured surface had lower friction coefficient performances than the non-textured surface due to the hydrodynamic lubrication effect.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제3보 - 딤플 수의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 3 - Effect of Number of Dimples)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.302-307
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied recently to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, numerical analysis is carried out to investigate the effect of number of dimples on the lubrication characteristics of parallel thrust bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure distributions of present analysis are physically consistent than those obtained from numerical analysis of Reynolds equation. The overall lubrication characteristics are highly affected by number of dimples and their locations. The results can be use in design of optimum dimple characteristics to improve thrust bearing performance and further researches are required.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

POM 마찰 및 마모에 대한 마이크로 표면 텍스처링의 영향 (The Effect of Surface Micro Texturing on Friction and Wear of Polyoxymethylene)

  • 이재봉;조민행
    • Tribology and Lubricants
    • /
    • 제25권3호
    • /
    • pp.141-149
    • /
    • 2009
  • The effect of micro-cavities fabricated using laser surface texturing (LST) technique on polyoxymethylene (POM) surface was studied in terms of heat affected zone (HAZ), cavity geometry, surface roughness, deformation of cavity along with sliding cycles, and tribological characteristics. Cavity process parameters were lamp current, process time, and the stream of air used to minimize the flow of molten polymer into cavity. Especially, the deformation of cavity geometry was extensively studied to provide deep insight into morphological analysis of the cavities. Also, this paper presents the behavior of friction and wear of POM specimens as a function of sliding cycles.

레이저 표면처리 된 금속의 마찰특성에 관한 실험적 연구 (Experimental Study on Friction Characteristics of Metal Surface Treated by LST)

  • 박성용;민준원;이은길;추인길
    • 한국레이저가공학회지
    • /
    • 제13권1호
    • /
    • pp.16-20
    • /
    • 2010
  • The studies on the fine processing on the surface of the metal utilizing the technique for LST (Laser surface texturing) have been performed recently. This study has acquired the lower frictional coefficient and endurance in the harsh environment of motion in the low lubricating range of low frictional coefficient in addition to storing of lubricant through fine processing on the frictional part of metal.

  • PDF

Surface Texturing for Low Friction Mechanical Components

  • Iqbal, K. Y. Mohd;Segu, D. Z.;Pyung, H.;Kim, J. H.;Kim, S. S.
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.287-293
    • /
    • 2015
  • Laser surface texturing (LST), a surface engineering modification, has been considered as one of the new processes used to improve tribological characteristics of materials by creating artificially patterned microstructure on the contact surface of mechanical components. In LST technology, the laser is optimized to obtain or manufacture the dimples with maximum precision. The micro-dimples reduce the coefficients of friction and also improve the wear resistance of materials. This study investigates the effect of dimple density is investigated. For this purpose, a ball-on-disc type tester is used with AISI 52100 bearing steel as the test material. Discs are textured with a 5% and 10% dimple density. Experimental work is performed with normal loads of 5 N, 10 N, and 15 N under a fixed speed of 150 rpm at room temperature. The effect of the textured surface is compared to that of the untextured one. Experimental results show that the textured surface yields lower friction coefficients compared to those of untextured surfaces. Specifically, the 10% dimple density textured surface shows better friction reduction behavior than the 5% dimple density textured sample, and has an 18% improvement in friction reduction compared with the untextured samples. Microscopic observation using a scanning electron microscope (SEM) shows that the major friction mechanisms of the AISI 52100 bearing steel are adhesion, plastic deformation, and ploughing.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구 (NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재봉;조민행;이성혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF