• 제목/요약/키워드: laser surface melting

검색결과 93건 처리시간 0.021초

레이저 직접금속성형기술을 이용한 금형재 표면보수 특성 연구 (Characterization of Direct Laser Metal Forming Technology for the Restoration of Mold Surface)

  • 손영명;장정환;주병돈;임홍섭;문영훈
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.681-686
    • /
    • 2009
  • Direct laser metal forming technology was applied to restore the damaged mold surface. In order to estimate melting characteristics of the $20{\mu}m$ Fe-Cr-Ni powder, single layer experiments were performed at various levels of heat input. The process window of the $20{\mu}m$ Fe-Cr-Ni powder provided feasible process parameters for the smooth regular surface. The cross hatching scanning strategy on the multiple layer experiment was performed to reduce the thickness non-uniformity of edge portions compared with the one direction scanning. To estimate the coherence between the melted powder and the basematal, the tendency of hardness distribution has been observed. The hardness of the melted and the remelted zone was distributed from 400HV to 600HV. It is over 2 times compared of the hardness of the basemetal. Experimental results show that the mold restoring process using direct laser metal forming can be successfully applied in the mold repair industry.

다공성 친바이오 나노섬유 극초단 레이저 가공특성 연구 (Porous Bio-degradable Nano-fiber Machining by Femtosecond Laser)

  • 최해운
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.339-345
    • /
    • 2012
  • Electrospun meshed poly-caprolactone PCL was patterned by femtosecond laser with linear grooves. As parametric variables, focus spot size, pulse energy, and scanning speed were varied to determine the affects on groove size and the characteristics of the electrospun fiber at the edges of these grooves. The femtosecond laser was seen to be an effective means for flexibly structuring the surface of ES PCL scaffolds and the width of the ablated grooves was well controlled by laser energy and focus spot size. The ablation threshold was measured to be $14.9J/cm^2$ which is a little higher than other polymers. These affects were attributed to optical multiple reflections inside nano-fibers. By the laser-induced plasma at higher pulse energies, some melting of fibers was observed.

Microscopic Study on the Laser Surface-Melted Alloy 600

  • Lim, Yun-Soo;Cho, Hai-Dong;Kuk, Il-Hiun;Kim, Joung-Soo
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(3)
    • /
    • pp.347-352
    • /
    • 1996
  • Studies on tile microstructural and compositional changes in sensitized Ni base Alloy 600 by laser surface melting have been carried out using TEM equipped with EDXA. The microstructure of the laser melted zone was mainly consisted of fine cells, and along the cell and grain boundaries, Cr enrichment due to its segregation was observed. Cr carbides having formed along the grain bundaries during the sensitization treatment have been completely dissloved. The cell walls were decorated with dislocations and the very tiny precipitates, found to be Ti(CN) type, were distributed randomly along the cell walls with tangled dislocations around them.

  • PDF

Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구 (Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection)

  • 이병우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

Laser beam 표면개질 (I) : 비용융에 의한 표면개질 (Laser beam Surface Modification(1): Non-melting Processes)

  • 김정수;서정훈
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.25-35
    • /
    • 1997
  • 현재, 표면개질에 주로 많이 사용되는 레이저는 세 종류로서, C $O_{2}$$laser(파장길이:10.6.\mum),$ Nd:YAG(neodymium-doped yettrium aluminum garnet) $laser(파장길이:1.06.\mum)$ 및 excimer laser(157~350nm) 등이다. 이 외에도 초기에는 ruby레이저빔이 사용되기도 하였으나, 현재는 많이 사용되고 있지 않다. 레이저 빔에 의한 표면개질에는 몇가지 장점이 있는데, 이러한 장점은 주로 급속가열과 급속냉각 효과에 기인하는 것이다. 즉, 1) 급냉효과에 의한 미세한 결정입자 형성, 2) 불안정상 (metastable phase) 또는 비정질 상 생성, 3) 열역학적 용해도 보다 높은 용해도. 4) 편석이 없는 균질한 미세조직, 5) 극히 낮은 기공도, 6) 좁은 열영향 부위, 7) 표면층과 모재 사이의 높은 결합력 등이다. 이 외에도 공정상의 장.단점들이 Ref.5, 6에 잘 요약 정리되어 있다. 지금까지 국내에서 레이저 표면개질에 대한 조사가 몇몇 있었으나, 본 조사에서는 보통 많이 다루어지지 않은 부분, 즉 충격경화 및 표면제어에 비중을 두었으며, 비용융 부분(I)과 용융부분(II)을 분리하여 정리하였다.

  • PDF

Nd:YAG 레이저 조사시 치근면에 미치는 효과에 관한 주사전자현미경적 연구 (The Effects of Nd:YAG Laser Irradiation on the Root Surface;A Scanning Electron Microscopic Study)

  • 이수정;김수아;서석란;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제27권3호
    • /
    • pp.495-514
    • /
    • 1997
  • The purpose of this study was to evaluate the in vitro effects of Nd:YAG laser irradiation on removal of a root surface smear layer after root planing in comparison with Tetracycline HCl. The 60 extracted human teeth due to severe periodontal disease were vigorously scaled and root planed with Gracey curet. Thirty specimen($5{\times}5{\times}2mm$) were obtained from root planed surface of 30 human teeth and assigned randomly to one of three groups : root planed group(5 specimen), Tetracycline HCI group(5 specimen, burnished for 5 minutes), and Nd:YAG laser group(25 specimen, German Dental Laser, Fotona Twinlight). Nd:YAG laser group was divided into 4 subgroups according to power of 1W, 1.5W, 2W, 3W at frequency to 10Hz. The specimen were then fixed, and examed by Scanning electron microscopic study. 30 of 60 human teeth used to measurement of the intrapulpal temperature rise during laser irradiation. Laser-irradiated surface exhibited various surface texture from relative flat surface to irregular surface with patent dentinal tubules of various shape and size. In some area, the root surface alteration which are carbonization, pit and crater formation and melting and resolidification were observed. The number of exposed dentinal tubules per unit($100_{\mu}m^2$) on tetracycline HCI group was more than that in the laser group below 1.5W of power(150mJ/pulse) and was significantly less than that in laser group above 2W of power(200mJ/pulse)(P<0.OOl). As power increased the intrapulpal temperature rise also increased. The result suggested that the parameter which effectively remove root surface smear layer than tetracycline HCI may cause thermal damage to pulp and root surface alteration result from laser exposure would indicate need for additional instrumentation. Thus, Nd:YAG laser irradiation in these parameter may not be appropriate for clinical use as adjunct to conventional periodontal therapy.

  • PDF

치은연하치석제거술시 Nd : YAG 레이저를 이용한 효과에 관한 주사전자현미경적 연구 (The Scanning Electron Microscopic study on the effect during subgingival calculus removal using Nd:YAG laser)

  • 전용선;최병선;이석초;김형섭
    • Journal of Periodontal and Implant Science
    • /
    • 제27권2호
    • /
    • pp.411-424
    • /
    • 1997
  • The purpose of this study was to evaluate in vitro the effects during subgingival calculus removal using Nd:YAG laser. The study group was consisted of 30 teeth with advanced periodontal disease extracted before the start of periodontal therapy. The specimens were divided into 8 different groups : 1) untreated control 2) scaling and root planing only 3) laser treated using 150mJ/pulse, 1sec, 5sec, contact mode 4) laser treated using 200mJ/pulse, 5sec, contact mode 5) laser treated using 150mJ/pulse, 1sec, non-contact mode 6) laser treated using 200mJ/pulse, 5sec, non-contact mode 7) laser treated using l5OmJ/pulse, 1sec, contact mode with water irrigation 8) laser treated using 200mJ/pulse, 5sec, contact mode with water irrigation. All specimens were prepared for evaluation by scanning electron microscopy(SEM). Specimens from Group 2 exhibited a smear layer of scale like texture with parallel instrument tracks resulting from curet use. Specimens treated by contact mode, Group 3 and 4 featured surface changes not observed· in controls such as charring, randomly distributed pitting and crater formation, and melting down of the tooth material and calculus. Specimens treated by noncontact mode, Group 5 and 6 featured similar surface changes observed in contact mode. However, the differences between contact and non-contact groups not significant. Specimens treated by contact mode with water irrigation, Group 7 and 8 featured slight surface change compared to other groups. The results suggested that Nd: YAG laser did not completely remove the subgingival calculus but was possible the application as adjunctive method.

  • PDF

사출 성형 조건이 에프세타 렌즈의 유효면 특성에 미치는 영향 (Effect of Injection Molding Conditions of Effective Surface Properties of F-theta Lens)

  • 박용우;장기;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.20-27
    • /
    • 2021
  • The effective surface of lens was studied for injection molding process and to enable mass production of f-theta lens, which is the primary component of laser printers and laser scanning systems. Injection molding is an optimal method if f-theta lens is frequently used for the mass production of plastic lenses as an aspherical lens that requires ultra-precision. A uniform injection molding system should be maintained to produce high quality lenses. Additionally, to maintain these injection molding systems, various factors such as pressure, speed, temperature, mold and cooling should be considered. However, a lens with the optical characteristics of an f-theta lens can be obtained. The effects of melting and cooling of plastic resin on the effective surface of f-theta lenses and the numerous factors that affect the injection molding process were studied.

SM 45C강의 레이저 표면경화처리에 관한 연구 (A study on the laser surface hardening of SM 45C steel)

  • 나석주;김성도;이건이;김태균
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.53-62
    • /
    • 1987
  • 본 논문에서는 1 KW CW CO$_{2}$레이저 발생자장치를 사용하여 표면경화 처리 를 행할때 공정과 관련된 변수들이 용접부 및 표면경화층에 미치는 영향들을 이론과 실험을 통해서 규명하고, 이 결과들을 실제공정에 사용할 수 있는 기초자료로서 제시 하고자 한다. 이를 위해서 해석에 사용될 수 있는 유한요소법(Finite Element Meth- od)에 근거한 2차원 열유동 해석용 프로그램 및 데이타 처리 프로그램을 개발하고, 중 탄소강에 레이저 표면처리를 수행하여 실험 및 이론해석의 결과를 비교 검토하였다. 비교 검토하여 그 설정기준을 고찰하였다.

알루미나 세라믹 소재의 초단파 레이저 어블레이션량 연구 (Ablation rate study using short pulsed laser subjected to Alumina medium)

  • 김경한;박진호
    • 한국레이저가공학회지
    • /
    • 제18권4호
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, ablation rate of $Al_2O_3$ ceramics by femtosecond laser fluence is derived with experimental method. The automatic three axis linear stage makes laser optics to move with high spatial resolution. With 10 times objective lens, minimal pattern width of $Al_2O_3$ is measured in the focal plane. Ablated surface area is shown as linear tendency increasing number of machining times with various laser power conditions. Machining times is most sensitive condition to control $Al_2O_3$ pattern width. Also, the linear increment of pattern width with laser power change is investigated. In high machining speed, the ablation volume rate is more linear with fluence because pulse overlap is minimized in this condition. Thermal effect to surrounding medium can be minimized and clean laser process without melting zone is possible in high machining speed. Ablation volume rate decelerates as increasing machining times and multiple machining times should be considered to achieve proper ablation width and depth.