• Title/Summary/Keyword: laser radar

Search Result 72, Processing Time 0.019 seconds

Detection of Water Cloud Microphysical Properties Using Multi-scattering Polarization Lidar

  • Xie, Jiaming;Huang, Xingyou;Bu, Lingbing;Zhang, Hengheng;Mustafa, Farhan;Chu, Chenxi
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.174-185
    • /
    • 2020
  • Multiscattering occurs when a laser transmits into dense atmosphere targets (e.g. fogs, smoke or clouds), which can cause depolarization effects even though the scattering particles are spherical. In addition, multiscattering effects have additional information about microphysical properties of scatterers. Thus, multiscattering can be utilized to study the microphysical properties of the liquid water cloud. In this paper, a Monte Carlo method was used to simulate multi-scattering transmission properties of Lidar signals in the cloud. The results showed the slope of the degree of linear polarization (SLDLP) can be used to invert the extinction coefficient, and then the cloud effective size (CES) and the liquid water content (LWC) may be easily obtained by using the extinction coefficient and saturation of the degree of linear polarization (SADLP). Based on calculation results, a microphysical properties inversion method for a liquid cloud was presented. An innovative multiscattering polarization Lidar (MSPL) system was constructed to measure the LWC and CES of the liquid cloud, and a new method based on the polarization splitting ratio of the Polarization Beam Splitter (PBS) was developed to calibrate the polarization channels of MSPL. By analyzing the typical observation data of MSPL observation in the northern suburbs of Nanjing, China, the LWC and CES of the liquid water cloud were obtained. Comparisons between the results from the MSPL, MODIS and the Microwave radar data showed that, the microphysical properties of liquid cloud could be retrieved by combining our MSPL and the inversion method.

Development of an Imaging Based Gang Protection System

  • Grimm, M.;Pelz, M.
    • International Journal of Railway
    • /
    • v.1 no.4
    • /
    • pp.149-156
    • /
    • 2008
  • During maintenance or construction works in or at the tracks of railways, high risks for passengers and railway staff, especially for the workers on the construction site exist. The high risks result out of the movement of rail vehicles, like trains or construction vehicles, which must be faced by using any available technical and operational technologies for securing them against the environment. Therefore, it is necessary to evaluate the level of protection continuously and to identify new and innovative methods and technologies for the protection of the gang (construction worker, machines and material). Especially on construction sites at line sections with two or more parallel tracks but also with single tracks, there are still a lot of incidents and accidents mostly with seriously injured persons or fatalities. These were mainly gang members that breach the railway-loading gage. By using proper warning or protection systems, the avoidance of such accidents must be achieved. The latest developments. in gang protection systems concern on the one hand fixed barriers in the middle between the construction site and the operated track and on the other hand construction vehicles equipped with automatic warning systems. The disadvantage of such protection methods is that the gang can be warned against an approaching train but a monitoring of the gang members cannot be performed. Only one part of a potential dangerous situation will be detected. If the gang members will overhear the acoustic warning signal of the security staff and the workers will not leave the danger zone in the track, the driver of the approaching train had no chance to react to the dangerous situation. An accident is often inevitable. While the detection of acoustic warning signals by the gang members working on a construction site is very difficult, the acoustical planning of an automatic warning system has to be designed for an acoustic short range level of one meter besides the construction vehicle. The decision about the use of today's technical warning system (fixed systems, automatic warning systems, etc.) must be geared to the technical feasibility and the level of safety which is needed. Criteria for decision guidance to block a track should be developed by danger estimation and economical variables. To realize the actual jurisdiction and to minimize the hazards of railway operations by the use of construction vehicles near the tracks further developments are needed. This means, that the warning systems have to be enhanced to systems for protection, which monitor the realization of the warning signal as a precondition for giving a movement authority to a train. This method can protect against accidents caused by predictable wrongdoing. The actual state of the art technique of using a collective warning combined with additional security staff is no longer acceptable. Therefore, the Institute of Transportation System of the German Aerospace Center in Braunschweig (Germany) will develop a gang warning and protection system based upon imaging methods, with optical sensors such as video in visible and invisible ranges, radar, laser, and other. The advantage of such a system based on the possibility to monitor both the gang itself and the railway-loading gauge either of the parallel track or of the same track still in use. By monitoring both situations, the system will be able to generate a warning message for the approaching train, that there are obstacles in the track, so that the train can be stopped to prevent an accident. And also the gang workers will be warned, while they breach their area.

  • PDF