• Title/Summary/Keyword: laser measurement

Search Result 2,033, Processing Time 0.041 seconds

Estimation of PM2.5 Correction Factor for Optical Particle Counter in Ambient Air (대기환경에서 광산란 미세먼지 측정기의 PM2.5 보정계수 산정)

  • Kim, Jong Bum;Kim, Danbi;Noh, Sujin;Yoon, Kwan Hoon;Park, Duckshin;Lee, Jeong Joo;Kim, Jeongho
    • Particle and aerosol research
    • /
    • v.16 no.2
    • /
    • pp.49-59
    • /
    • 2020
  • Various devices have been developed to the measurement of particulate matter pollutants, and Optical Particle Counter (OPC) that can be easily and quickly measured is widely used lately. The measured value by OPC is converted to weight concentration using the correction factor (CF). The calculation of CF is very important to improve the reliability and accuracy of OPC. In this study, the CF calculation study of light scattering laser photometer (model 8533, TSI) was carried out to measure in the atmospheric environment using 2 gravimetric devices and 3 light scattering laser photometer devices. Regression analysis and Tukey tests were used to significance the test of measurement devices. Measurements were carried out twice. There was a comparative analysis of measurement data between light scattering laser photometer and gravimetric devices in 1st measurement, and then the Evaluation of PM2.5 concentration corrected by CF performed in 2nd measurement. As a result of the significance analysis between light scattering laser photometer and gravimetric devices, the correlation between the same method was high, but the correlation between different methods was low. CF was calculated as 0.4258 based on the measurement results, and it is a similar level to previous studies at home and abroad. It is expected that these results can be used as basic data in the future study for air quality measurement research using light scattering laser photometer. Also, in order to improve the accuracy of the measurement techniques and the development of technology in the atmospheric environment, CF calculation research should be conducted continuously.

A Measurement Method to Compromise Surface Error in Machined Workpieces (평면 오차 보정 가공을 위한 측정 방법에 관한 연구)

  • 장문주;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.409-412
    • /
    • 2002
  • This paper presents a measurement method to compromise surface error in surface machining processes. In order to compromise the surface error in machining process, on-machine measurement is essential. There are two kinds of on-machine measurement methods available to measure the surface errors in flat workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are inevitably engaged in both methods. This paper proposes a new idea to measure the surface error for error compensation. The measurement system consists of a laser, a CCD camera and processing system, a carrier system with a stylus, and some optical units. The experimental results show that the proposed method is useful to compensate the surface errors of machined workpieces.

  • PDF

A Study on the Development of Measurement Setup for Crater Wear by Diffraction Grating in Turning (선삭에서 회절격자를 이용한 크레이터마모 측정장치 개발에 관한 연구)

  • Kim, Yeong-Il;Kim, Se-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-95
    • /
    • 1992
  • There is the high interest for sensing of tool wear with the aim of controlling machine tools productivity from the point of view of qualitity. Difficulties in this measurement are also known. This study is on the development of measurement setup for crater wear by CCD image inturning. In this study, the crater wear measurement system consists of the He-Ne gas laser, diffraction grating. CCD camera, noise filter, slit, microcomputer, diverging lens, converging lens and so on. He-Ne laser beam passes through a diverging lens and a diffraction grating is positioned properly. A converging lens focuses so that the interference fringes can be obtained on the crater wear. Performance test revealed that the developed image technique provides precise, absolute tool-wear quantification and reduces human measurement errors. The results obtained are as follows 1. The digitizing of one image requires less than 2ses. 2. It can give detailed information on crater wear with limited times and errors 3. All parameters required by specification are easily obtained for several points of the cutting edge.

  • PDF

Quantitative Acetone PLIF Measurement of Fuel Distribution in a Gas Turbine Combustor Burner (아세톤 PLIF를 이용한 가스터빈 연소기 버너 출구 연료분포의 정량적 측정)

  • Jeon, Woo-Jin;Kim, Hyung-Mo;Lee, Kang-Yeop;Yang, Su-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.43-52
    • /
    • 2010
  • A non-intrusive measurement, Planar Laser Induced Fluorescence was employed to visualize and measure the fuel distribution of the non-reacting field at the burner exit of gas turbine combustor. Measurement techniques, image processing method and quantification procedure were presented. Also, concentration measurement with gas analyzer was carried out to verify the propriety of PLIF result. The PLIF result coincides well with gas analyzer measurement result. PLIF test result for several other conditions are mentioned as well.

Development of 3D Burr Measurement Technique using Conoscopic Holography (Conoscopic Holography를 이용한 3D Burr 측정기술 개발)

  • 박상욱;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.951-954
    • /
    • 2003
  • Generally, for the burrs formed in machining are irregular and very sharp in shape, it is usually very difficult to measure burr accurately. But, it is proved that precision measurement for micro burr using the conoprobe sensor by conoscopic holography method is possible. We developed 3D burr measurement system using this sensor. The system is composed of Conoscopic laser Sensor, X-Y table, controller and 3D measurement program. Some measurements using the developed system are applied to burrs formed in micro drilling and piercing.

  • PDF

The OMM system for machined form and surface roughness measurement concerned with volumetric error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.681-686
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

The OMM System for Machined Form and Surface Roughness Measurement Concerned with Volumetric Error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.232-240
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

Characterization of three-dimensional ultrasonic anemometer using phase measurement (위상측정방식을 이용한 3차원 초음파 풍향풍속계의 특성분석)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.442-448
    • /
    • 2006
  • Ultrasonic anemometers using pulse envelope detection-based method are standard instruments in most meteorological studies. In this paper, a new phase measurement method is tried to achieve the enhanced resolution without changing dimensions. The measurement sensitivity, dynamic range, and measurement speed of the new instrument are 0.2 mm/s, 13.3 m/s, and 13 measurements/sec, respectively. A graphic user interface is added to show the velocity and direction of the wind with the speed of sound and temperature of the wind in the 3 dimensional space. The new anemometer could be useful for the measurement of the air speed, the flow of fluids, and even air flow inside the downtown buildings.

Study on Light scattering of rough PCB surface by the measurement of BRDF (BRDF 측정을 통한 PCB 표면의 광 산란 특성 연구)

  • Go, Nak-Hun;Seo, Seung-Won;Choe, Tae-Il;O, Beom-Hwan;Park, Se-Geun;Lee, Il-Hang;Lee, Seung-Geol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.427-428
    • /
    • 2008
  • In this paper, we propose an BRDF measurement method based on laser light scattering, which is very effective for roughness measurement. The measurement setup has a very simple configuration, which consists of a collimated green laser, a detector. The experimental tests show that the BRDF measurement has difference between good Au Pad and bad Au Pad.

  • PDF

High resolution linear scale using collimated LASER (레이저를 이용한 광학식 리니어 스케일의 분해능 향상에 관한 연구)

  • 박윤창;정경민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.170-174
    • /
    • 1999
  • The main scale of linear scale greatly affects on the precision of displacement measurement. Especially when needing the long range measurement, the length of main scale should be increased accordingly. In this paper, we propose a linear scale that uses laser interference pattern as main scale for long range measurement. The linear scale is similar to Michelson interferometer excepting that the reference mirror is tilted so as to obtain interference fringe pattern and a grating panel is attached on a quadratic photo diodes. Four kinds of grating having phase differences of 0, $\pi$ /4, $\pi$ /2, 3 $\pi$ /4 are arranged on the panel. The experimental results show that signals of - quadratic photo diode, A, B,$\overline{A}$ and $\overline{B}$ are cosine wavelike and successive signals have phase difference of $\pi$/4 each other. So the proposed method can achieve improved measurement resolution.

  • PDF