• Title/Summary/Keyword: laser intensity

검색결과 779건 처리시간 0.062초

저강도 레이저 조사에 의한 가토 피부의 상처 치유에 관한 연구 (The Study on Wound Healing in Rabbit Skins by Low-intensity Laser Irradiation)

  • 김식현;전진석
    • 대한의생명과학회지
    • /
    • 제6권2호
    • /
    • pp.119-129
    • /
    • 2000
  • 피부는 인체의 표면을 보호하는 중요한 기관으로 피부가 손상되었을 경우 상처 재생은 염증기, 상피화기, 수복기의 정상적인 재생 단계를 거치며 치유된다 최근 저강도 레이저의 생물학적 효과로서 상처 재생과의 밀접한 관련성이 알려지고 있다. 본 연구는 저강도 레이저가 상처 재생에 미치는 유의한 효과를 세포 형태학적으로 확인하기 위해 실험적으로 유도한 가토 피부 상처 (2$\times$2 cm)에 12일 동안 5 Hz, 830 nm, 1.6 J/$cm^2$의 자극강도 (10 min/day)로 상처면에 레이저를 적용한 결과, 다음과 같은 곁과를 얻었다. 레이저 조사군의 경우 결합조직의 수복과 상피의 재형성이 대조군과 비교했을 매우 빠르게 진행되는 것으로 관찰되었으며, 특히 섬유아세포의 활성과 육아조직 합성율이 유의하게 증가되는 것으로 확인되었다. 이상의 연구 곁과를 종합해 달 때 유효한 치료강도의 저강도 레이저 자극은 피부의 개방성 창상 및 욕창 등의 상처 치유를 촉진할 수 있는 것으로 사료된다.

  • PDF

GaAsAl 레이저 자극이 흰쥐의 압통역치에 미치는 영향 (Effects of GaAsAl Laser on the Pressure Pain Threshold in Rats)

  • 송영화;이영구;임종수
    • 대한물리치료과학회지
    • /
    • 제7권2호
    • /
    • pp.533-543
    • /
    • 2000
  • This study was designed to evaluate the analgesic effect of low power GaAsAl laser on the pain threshold of mechanical stimulation using different treatment points, acupuncture point (zusanli) and non-acupuncture points(back). Furthermore, we investigated the analgesic effect of low power GaAsAl laser using the different duration and intensity of laser in mechanical stimulation induced pain behavior. The results were summarized as follows: 1. The threshold of mechanical stimulation was significantly increased by GaAsAl laser stimulation into zusanli point after 15 and 30 min after laser stimulation(P<05). However, the laser stimulation into non-acupoint did not affect the pain threshold of mechanical stimulation. with dose dependent manner. 2. In order to investigate the analgesic effects of BV depending upon different intensities of laser stimulation, the experimental animals were divided into three groups: 3 mW treated group, 6 mW treated group and 10 mW treated group. The low power GaAsAl laser stimulation was applied into zusanli acupoint for 30 min with different intensity of laser stimulation. Six and ten mW of laser stimulation significantly increased the pain threshold of mechanical stimulation at 15 min after laser stimulation as compared to that of control group(P<.05). Moreover, the analgesic effect of 10 mW laser stimulation was maintained for 30 min after laser stimulation (P<.05). 3. Finally, we tested the analgesic effect of 10 mW laser stimulation using different duration such as 10 min, 30 min or 1 hr after application of mechanical stimulation. In 30 min treatment group, the pain threshold of mechanical stimulation was increased at 15min and 30min after laser stimulation(P<.05). However, laser stimulation for 60 min dramatically increased the pain threshold of mechanical stimulation at 0 min after laser stimulation and the analgesic effect of laser stimulation was observed until 1 hr after laser stimulation. In conclusion, these data apparently demonstrate that low power GaAsAl laser has analgesic effect on mechanical induced pain model in rats. In addition, the treated point, intensity and duration of laser stimulation should be concerned before clinical application for pain management purpose.

  • PDF

Coherent Control of Autler-Townes Splitting in Photoelectron Spectroscopy: The Effect of Laser Intensity and Laser Envelope

  • Qin, Chaochao;Zhai, Hongsheng;Zhang, Xianzhou;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3294-3298
    • /
    • 2014
  • We theoretically investigated the coherent control of Autler-Townes splitting in photoelectron spectroscopy of K2 molecule within an ultrafast laser pulse by solving the time-dependent Schrodinger equation using a quantum wave packet method. It was theoretically shown that we can manipulate the splitting of photoelectron spectroscopy by altering the laser intensity. Furthermore, it was found that the percentages of each peak in photoelectron spectroscopy can be controlled by changing the envelope of the laser pulse.

펨토초 레이저를 이용한 유리 표면의 미세구조 생성에 관한 연구 (A study on micro patterning on the surface of glass substrate using femtosecond laser)

  • 최지연;장정원;김재구;신보성;장원석;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.640-643
    • /
    • 2003
  • We present investigations of the surface micromachining for transparent glass substrate, e.g. soda lime glass using tightly focused 800nm Ti:sapphire femtosecond laser. In this study, experiment conditions such as laser intensity, scanning speed, focus position were controlled as variable parameters to decide optimal machining conditions. This study shows clearly that laser intensity and scanning speed are dominant factors for good surface morphology. Using the optimal conditions, grooves with 50${\mu}{\textrm}{m}$ line width were fabricated on glass substrate and their surface morphologies were investigated from SEM image.

  • PDF

Material Dependence of Laser-induced Breakdown of Colloidal Particles in Water

  • Yun, Jong-Il
    • Journal of the Optical Society of Korea
    • /
    • 제11권1호
    • /
    • pp.34-39
    • /
    • 2007
  • Laser-induced breakdown of colloidal suspensions, such as polystyrene, $ZrO_2$, and $SiO_2$ particles in diameters of 100-400 nm in water is investigated by nanosecond flash-pumped Nd:YAG laser pulses operating at a wavelength ${\lambda}$= 532 nm. The breakdown threshold intensity is examined in terms of breakdown probability as a function of laser pulse energy. The threshold intensity for $SiO_2$ particles ($1.27{\times}10^{11}\;W/cm^2$) with a size of 100 nm is higher than those for polystyrene and $ZrO_2$ particles with the same size, namely $5.7{\times}10^{10}$ and $5.5{\times}10^{10}\;W/cm^2$, respectively. Results indicate that the absorption of five photons is required to induce ionization of $SiO_2$ particles, whereas the other particles necessitate four-photon absorption. These breakdown thresholds are compared with those measured by nanosecond pulses from a diode-pumped Nd:YAG laser having a different focusing geometry.

KrF 레이저를 이용한 희박연소화염과 매연화염에서의 NO계측 (NO measurements in lean and soot flame using KrF laser)

  • 손성민;고동섭;이중재;오승묵;강건용;김종욱
    • 한국광학회지
    • /
    • 제12권3호
    • /
    • pp.177-183
    • /
    • 2001
  • KrF 레이저를 여기광원으로 사용하여 희박연소화염과 매연화염에서 각각 청색편이된 NO형광 신호를 측정하였다. 두 화염에 대해서 여기광의 세기와 NO 첨가량에 따른 NO 신호와 배경잡음의 세기를 계측하고 그 결과를 정성적으로 분석하였다. 또한 희박연소화염에서 위치에 따른 NO 신호의 세기도 관측하였다.

  • PDF

The Study of Sequential Lateral Solidification Process as a Function of Laser Intensity

  • Jang, Sung-Jin;Kim, Byoung-Joo;Kim, Hyun-Jae;Kang, Myung-Koo;Souk, Jun-Hyung;Kim, Do-Young;Suh, Chang-Ki;Dhungel, Suresh Kumar;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.679-682
    • /
    • 2003
  • We report the suitable SLS (sequential lateral solidification) as a function of laser intensity. Precursor film is changed from 50nm to 100nm and is deposited on glass substrate by PECVD. We can find the suitable SLS length by changing the mask size. In this paper, we present the well-defined grain growth conditions as a function of laser intensity.

  • PDF

펄스 레이저 증착법으로 성장된 ZnO 박막의 PL 특성에 대한 신경망 모델링 (Neural network based modeling of PL intensity in PLD-grown ZnO Thin Films)

  • 고영돈;강홍성;정민창;이상렬;명재민;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.252-255
    • /
    • 2003
  • The pulsed laser deposition process modeling is investigated using neural networks based on radial basis function networks and multi-layer perceptron. Two input factors are examined with respect to the PL intensity. In order to minimize the joint confidence region of fabrication process with varying the conditions, D-optimal experimental design technique is performed and photoluminescence intensity is characterized by neural networks. The statistical results were then used to verify the fitness of the nonlinear process model. Based on the results, this modeling methodology can be optimized process conditions for pulsed laser deposition process.

  • PDF