• 제목/요약/키워드: laser heat treatment

검색결과 226건 처리시간 0.026초

SM45C강의 연속파 Nd:YAG레이저표면경화와 고주파표면경화특성 비교 (Comparison of Characteristics on Induction and Continuous Nd:YAG Laser Surface hardening of SM45C Steel)

  • 신호준;유영태;안동규;신병헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.176-183
    • /
    • 2005
  • Laser heat treatment technology is used for improving the feature of fatigue resistance and wear resistance in mobile parts. The purpose of this study is to compare the characteristics of laser heat treatment and high frequency heat treatment, which is commonly used in industrial place. For the preemptive experiment, the distribution, depth and size of hardening and its micro-structural features were compared between surface heat treatment case by defocusing and variables of each process for heat treatment by exclusively manufactured heat treatment optical system. As a result, high frequency heat treatment has wide distribution of hardening depth and width about 3 times larger than laser heat treatment, however, its average hardness showed 621.4Hv which is smaller than the average hardness of laser heat treatment with 691Hv.

  • PDF

고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성 (Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser)

  • 황현태;소상우;김종도;김영국;김병훈
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

고출력 다이오드 레이저를 이용한 프레스 전단금형의 경화특성 (Heat Treatment Characteristics of Press Blanking Die by Using High Power Diode Laser)

  • 황현태;소상우;황재현;김종도
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.257-262
    • /
    • 2010
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source.

SM45C강의 레이저표면경화와 고주파표면경화특성 (Characteristics Induction and Laser Surface hardening of SM45C Steel)

  • 나기대;신호준;신병헌;유영태
    • 한국정밀공학회지
    • /
    • 제23권7호
    • /
    • pp.39-50
    • /
    • 2006
  • Laser heat treatment technologies have been used to improve characteristics of wear and to enhance the fatigue resistance for automotive parts. The bjective of this research work is to investigate the influence of the process parameters, such as power of laser and defocused spot position, on the characteristics of laser heat treatment for the case of SM45C medium carbon steel. CW Nd:YAG laser is selected as the heat source. The optical lens with the elliptical profile is designed to obtain a wide heat treatment area with a uniform hardness. From the results of the experiments, it has been shown that the maximum hardness is approximatly 780 Hv when the power and the travel of laser are 1,095 W and 0.6 m/min, respectively. In addition, the hardening width using the elliptical lens was three time larger than that using the defocusing of laser beam.

금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 - (A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment-)

  • 김종도;송무근;황현태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권8호
    • /
    • pp.1048-1054
    • /
    • 2011
  • 레이저 표면경화처리는 고밀도 에너지 열원에 의해 레이저 조사부위만 급속 가열한 후 표면의 열이 내부로 전도되어 급속히 자기냉각 됨으로써 표면을 경화시키는 방법이다. 이 표면처리 방법은 열처리에 의한 열변형이 거의 없고, 표면경화처리 이후 다른 공정을 수반하지 않는다. 또한 국부적인 가공이 가능하기 때문에 복잡한 형상을 가지는 금형에는 적합한 표면처리 방법이다. 본 연구에서는 열처리에 적합한 빔 프로파일을 가진 고출력 다이오드 레이저를 이용하여 금형재료용 주철의 표면처리를 실시하였다. 프레스 금형 공정에 따른 금형의 형상이 다르기 때문에 적용부위에 따라 시험편을 평면과 모서리부로 나누어 열처리를 실시하였다. 이때 모서리부의 열처리는 광학헤드를 $10^{\circ}$ 기울인 상태에서 진행하였다. 그 결과, 모서리부의 열처리는 평면부와 비교하여 형상에 따른 열전달 루트가 제한되므로, 입열이 집중되기 쉬워 평면 열처리보다 빠른 이송속도에서 경화가 이루어졌다.

OLP 시뮬레이터 기반의 다이오드 레이저 열처리 로봇시스템 개발 (Development of the Diode Laser Heat Treatment Robot System Based on OLP Simulator)

  • 박기진;윤성호
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.8-14
    • /
    • 2015
  • Heat treatment for car body molds is mainly a manual process performed by a worker. The performance of this process is affected by workers' skill level, and has limitation in maintaining uniform product quality. In this study, we developed a diode laser heat treatment robot system that implements an OLP type simulator to overcome the limitation of manual process, and to improve and stabilize the quality level. In addition, we verified the efficiency of the robot system and mechanism stability from the early stage through design verification and simulated analysis in the development stage. In addition, we carried out a field test to study the way to establish optimized D/B for diode laser heat treatment criteria for car body molds, such as heat treatment speed, interval, etc. via site experiment.

금형재료용 주철강의 복합열처리 특성 (Combined Heat Treatment Characteristics of Cast Iron for Mold Materials)

  • 황현태;소상우;김종도
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.

초고속화염용사 WC-CoFe 코팅층의 레이저 표면 열처리 효과 (Effect of Laser Heat-treatment on WC-CoFe Coated Surface by HVOF)

  • 주윤곤;윤재홍;이재현
    • 한국재료학회지
    • /
    • 제29권1호
    • /
    • pp.52-58
    • /
    • 2019
  • The microstructure, hardness, and wear behaviors of a High Velocity Oxygen Fuel(HVOF) sprayed WC-CoFe coating are comparatively investigated before and after laser heat treatments of the coating surface. During the spraying, the binder metal is melted and a small portion of WC is decomposed to $W_2C$. A porous coating is formed by evolution of carbon oxide gases formed by the reaction of the free carbon and the sprayed oxygen gas. The laser heat treatment eliminates the porosity and provides a more densified microstructure. After laser heat treatment, the porosity in the coating layer decreases from 1.7 % to 1.2 and the coating thickness decreases from $150{\mu}m$ to $100{\mu}m$. The surface hardness increases from 1440 Hv to 1117 Hv. In the wear test, the friction coefficient of coating decreases from 0.45 to 0.32 and the wear resistance is improved by the laser heat treatment. The improvement is likely due to the formation of oxide tribofilms.

다이오드 레이저를 이용한 금속 표면 열처리 특성 (Characteristics of Metal Surface Heat Treatment by Diode Laser)

  • 최성대;정선환;김기만;양승철;김잠규
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.16-23
    • /
    • 2007
  • An experimental investigation with diode laser system was carried out to study the effect of surface heat treatment on the die materials(SM45C, SKD11, SK3). The surface heat treatment characteristics of the laser beam are evaluated using hardness tests, optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy(EDS). Results indicated that the beam size, focal length, feed rates are changed surface hardened characteristics. SM45C is higher hardness than other materials and composed to martensite grain at hardened zone, whereas other materials(SKD11, SK3)are low hardness than expected and composed to austenite and allayed martensite at hardened zone. The intensive X-ray diffraction patterns of (110)-(200)-(211) is detected hardened surface and the hardened surface distributed plenty of carbon density than metal zone.

  • PDF

CW Nd:YAG 레이저를 이용한 금형열처리 (Metallic pattern Heat treatment by means of CW Nd:YAG Laser)

  • 신호준;유영태;오용석;노경보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1898-1904
    • /
    • 2003
  • Laser heat treatment is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_{2}$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of matrensitic structure. In this investigation, the microstructrual features occurring in Nd:YAG laser hardening SM45C and $STD_{11}$ steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimisation of the processing parameters for maximum hardened depth of SM45C and $STD_{11}$ steel specimens of 10mm thickness by using CW Nd:YAG laser.

  • PDF