• Title/Summary/Keyword: laser grid

Search Result 88, Processing Time 0.022 seconds

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(III) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(III))

  • Song Gi-Nam;Yun Gyeong-Ho;Lee Gang-Hui;Kim Su-Seong;Han Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.42-44
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, a series of welding tests were carried out to find an optimum welding condition. After examining and analyzing the specimens welded from the welding conditions, a recommendable laser welding condition was selected for the KAERI designed Zircaloy spacer grid assembly.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Spacer Grid Assembly for PWR fuel Assembly (경수로 원전연료용 지지격자의 LASER 용접품질 평가)

  • Song, Gi-Nam;Yun, Jeong-Ho;Gang, Hong-Seok;Lee, Gang-Hui;Kim, U-Gon;Kim, Su-Seong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.109-111
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the spacer grid assembly welded by several welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

The singulation study of $\mu$-BGA(Ball Grid Array) board using a pulsed Nd:YAG laser (펄스 Nd:YAG 레이저를 이용한 $\mu$-BGA 기판의 개별칩 분리 연구)

  • Baek, Kwang-Yeol;Lee, Kyoung-Cheol;Lee, Choen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.524-527
    • /
    • 2000
  • In this paper, we have studied minimization of the burr which occurred after $\mu$-BGA(ball grid array) singulation process, singulation of the multilayer with a pulsed Nd:YAG(266, 532 nm) laser is used to cut the metal layer which doesn't well absorb laser beam. Especially, the photoresist and $N_2$blowing is effective to minimize of the surface demage and burr. In this experiment, the $N_2$ blowing reduces a laser energy loss by debris and suppress a surface oxidation. The SEM(scanning electron microscopes) and non-contact 3D inspector are used to measure cutting line-width and surface demage. The $\mu$-BGA singulation threshold energy is 75.0 J/cm$^2$at 30 ${\mu}{\textrm}{m}$/s scan speed.

  • PDF

Automatic Building Extraction Using LIDAR Data

  • Cho, Woo-Sug;Jwa, Yoon-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1137-1139
    • /
    • 2003
  • This paper proposed a practical method for building detection and extraction using airborne laser scanning data. The proposed method consists mainly of two processes: low and high level processes. The major distinction from the previous approaches is that we introduce a concept of pseudogrid (or binning) into raw laser scanning data to avoid the loss of information and accuracy due to interpolation as well as to define the adjacency of neighboring laser point data and to speed up the processing time. The approach begins with pseudo-grid generation, noise removal, segmentation, grouping for building detection, linearization and simplification of building boundary , and building extraction in 3D vector format. To achieve the efficient processing, each step changes the domain of input data such as point and pseudo-grid accordingly. The experimental results shows that the proposed method is promising.

  • PDF

A Study on the Improvement of the Efficiency of Dye-sensitized Solar Cell using the Laser Scribing and the Grid Electrode (레이저 식각 및 그리드 전극을 적용한 염료감응형 태양전지의 효율 향상 연구)

  • Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyung-Jun;Kim, Jeong-Hoon;Hong, Ji-Tae;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1802-1806
    • /
    • 2008
  • Dye-sensitized solar cell (DSC) based on some advantages such as transparency, cheap materials and anti-sensibility for an anlge of incidence has been expected to capture most of solar cell market in the near future. To practical use of DSC, researches on high efficiency as well as upscaling are necessary. In this study, we tried to insert the grid electrode in DSC and scribe transparent conducting oxide (TCO) using Nd:YAG laser. The grid electrode makes the electron movement improved and diffusional movement minimized. Consequently, the efficiency of DSC was increased by reducing electron loss and the surface resistance of TCO. The grid electrode was made using Ag target by radio frequency sputtering. And the scribed surface was confirmed by taking a scanning electron microscopy photos. As the result, grid cell had improved photocurrent and fill factor as compared with the conventional cell. And the efficiency was increased about 1% by enhanced photocurrent and fill factor.

Welding Quality Evaluation on the LASER Welding Parts of the Spacer Grid Assembly for PWR Fuel Assembly (경수로 원전연료용 지지격자체의 LASER 용접부위 평가)

  • Song Gi Nam;Yun Gyeong Ho;Gang Heung Seok;Lee Gang Hui;Kim Su Seong
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.67-69
    • /
    • 2004
  • The fuel assemblies as the nuclear fuel for the pressurized water reactor(PWR) are loaded in the reactor core throughout the residence time of three to five years. The spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral load acting on the fuel assembly so as to keep the fuel assembly straight. To meet the requirement, integrity on the spacer grid welding parts should be carefully checked. In this study, welding quality of the spacer grid assembly welded by several welding companies are examined and compared.

  • PDF

Efficient Processing of Huge Airborne Laser Scanned Data Utilizing Parallel Computing and Virtual Grid (병렬처리와 가상격자를 이용한 대용량 항공 레이저 스캔 자료의 효율적인 처리)

  • Han, Soo-Hee;Heo, Joon;Lkhagva, Enkhbaatar
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.21-26
    • /
    • 2008
  • A method for processing huge airborne laser scanned data using parallel computing and virtual grid is proposed and the method is tested by generating raster DSM(Digital Surface Model) with IDW(Inverse Distance Weighting). Parallelism is involved for fast interpolation of huge point data and virtual grid is adopted for enhancing searching efficiency of irregularly distributed point data. Processing time was checked for the method using cluster constituted of one master node and six slave nodes, resulting in efficiency near to 1 and load scalability property. Also large data which cannot be processed with a sole system was processed with cluster system.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(II) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(II))

  • Song, Gi-Nam;Yun, Gyeong-Ho;Lee, Gang-Hui;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.70-72
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the Zircaloy spacer grid assembly welded by two welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

Widely tunable thulium-doped fiber laser anchored on 50-GHz ITU-T grid in S/S+ band (S/S+band에서 넓은 파장가변 영역을 가지고 50-GHz ITU-T격자에 맞는 채널을 생성하는 thulium이 첨가된 광섬유 레이저)

  • 안성준;박철근;안승준;박종한;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.17-21
    • /
    • 2004
  • We demonstrate an S/S+band discretely tunable thulium doped fiber laser (TTDFL), anchored on a 50-㎓ ITU-T grid. Investigating the inversion analysis of the thulium doped fiber (TDF) in applying a dual wavelength (1.4 m and 1.5 m) pumping scheme, a laser whose tuning range covers most of the S/S+band has been obtained. Within the wide 3-㏈ bandwidth of 65.1 nm, the output power of the tunable laser exceeds 6.1 ㏈m with very flat spectral profile and the number of DWDM channels generated is as large as 178. If we increase the subsidiary pump power to 22 ㎽, the bandwidth is expanded up to 66.2 nm. By controlling the temperature of the fine grid filter, we have also shown that the frequency locking capability of the laser can be improved. The laser developed in this work is expected to be utilized as a practical optical source providing reference wavelengths in the S/S+band.

A Study of Laser Patterning for $SiO_2$ Thin Film of Crystalline Solar Cells (결정질 태양전지 $SiO_2$ 박막의 Laser Patterning에 관한 연구)

  • Lee, C.S.;Lee, J.C.;Kim, K.S.;Kang, H.S.
    • Laser Solutions
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Globally, the interest of renewable energy has become an upsurge. Especially, the solar industry is the one which is getting rapid growth rate. Many of researchers have been undertaking to improve the efficiency of solar cell to accomplish grid parity. The most of research has been concentrated on two methods, one on the selective emitter and the other is on LBSF (Local Back Surface Field) formation. Laser patterning will be needed to eliminate the thin film to form selective emitter and LBSF of solar cell. This paper reports some experimental results in laser patterning process for high-efficiency crystalline solar cell manufacturing. The experimental results indicate that the patterning quality depends on the average power and repetition rate of laser. The experimental results prove that the laser patterning process is an advantageous method to improve the efficiency of solar cell.

  • PDF