• Title/Summary/Keyword: laser device

Search Result 819, Processing Time 0.038 seconds

Development of Nd-Yag Laser Marking System for Cylinderical Parts (Nd-Yag 레이저를 이용한 원통 형상 표면 마킹 시스템 개발)

  • Lee, Se-Han;Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.70-75
    • /
    • 2010
  • In this paper, laser marking systems dedicated to cylinderical parts was developed. We first develop the marking device which consists of Nd-Yag laser, galvano scanner and additional rotational axis, then develop algorithm for supporting the digital image with bmp data format. Additional rotational axis is so attached as to rotate the cylinderical parts for marking its whole surface. The image is separated into line by line and the separated line image is sent to galvano scanner while rotating the additional axis simultaneously. CxImage library, famous open source code, is employed for the image processing. The developed method was tested with various images and shows that it reduces marking time significantly without reducing marking quality.

A Method of Wood Section Measuring and the Image Calibration Using Line Laser (Line Laser 를 이용한 목재단면 측정 및 영상보정 방법)

  • Kim, Gi Hwan;Park, Min Su;Kim, Do Yeop;Lee, Suk Yong;Lee, Eung Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.641-646
    • /
    • 2016
  • The best method of measuring wood diameter is a contact-type device: however, obtaining an accurate result can be problematic under certain circumstances. In this study, we used a laser beam and a CCD camera that did not require contact with wood. The wood is illuminated by the laser beam, and the CCD camera captures this illumination. The measurement results were determined by processing of the captured image sequences. This paper explains the use of image processing and laser systems for measurement of wood under circumstances in which physical contact is impossible.

Light emission properties of ZnO thin films grown by pulsed laser deposition (펄스 레이저 증착법으로 제작한 ZnO 박막의 발광 특성)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.539-542
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF

The Variation of the Characteristics of DLC Thin films by Pulsed Laser Deposition (레이저 증착변수에 의한 다이아몬드상 카본 박막 특성변화)

  • Sim, Gyeong-Seok;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.344-348
    • /
    • 1999
  • Diamond like carbon(DLC) thin films possesed not only marvelous material characteristics such as large thermal conductivity, high hardness and being chemically inert, but also possesed negative electron affinity (NEA) properties. The NEA is an extremely desirable property of the material used in microelestronics and vacuum microelestronics device. DLC films were fabricated by pulsed laser deposition(PLD). Theeffect of the laser energy density and the substrate temperature on the properies of DLC films was investigated. The experiment was accomplished at temperatures in the range of room temperature to $600^{\circ}C$. The laser energy density was in the range of 6 $J/cm^2$ to 16 $J/cm^2$.

  • PDF

An Investigation of Laser Welding Characteristics for Attachments of Zircaloy-4 Bearing Pads of Nuclear Fuel Elements (핵연료봉 지르칼로이-4 지지체부착을 위한 레이저용접부의 특성 조사)

  • 김수성;이성구;이영호
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.41-46
    • /
    • 2002
  • A new laser welding system far the appendage of bearing pads of PHWR nuclear fuel elements has been developed. This system consists of laser oscillator, a optical fiber transmission, a monitoring device and a welding controller. The basic welding experiments of the appendage of Zircaloy-4 bearing pads were carried out. The laser welded samples were investigated and made by using the optical fiber of GI $400\mu\textrm{m}$. As a result, the seam welding with the bead width of 1.0mm and the weld penetration of 0.3mm could be accomplished.

Manufacture of Daily Check Device and Efficiency Evaluation for Daily Q.A (일일 정도관리를 위한 Daily Check Device의 제작 및 효율성 평가)

  • Kim Chan-Yong;Jae Young-Wan;Park Heung-Deuk;Lee Jae-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Purpose : Daily Q.A is the important step which must be preceded in a radiation treatment. Specially, radiation output measurement and laser alignment, SSD indicator related to a patient set-up recurrence must be confirmed for a reasonable radiation treatment. Daily Q.A proceeds correctness and a prompt way, and needs an objective measurement basis. Manufacture of the device which can facilitate confirmation of output measurement and appliances check at one time was requested. Materials and Methods : Produced the phantom formal daily check device which can confirm a lot of appliances check (output measurement and laser alignment. field size, SSD indicator) with one time of set up at a time, and measurement observed a linear accelerator (4 machine) for four months and evaluated efficiency. Results : We were able to confirm an laser alignment, field size, SSD indicator check at the same time, and out put measurement was possible with the same set up, so daily Q.A time was reduced, and we were able to confirm an objective basis about each item measurement. As a result of having measured for four months, output measurement within ${\pm}2%$, and measured laser alignment, field size, SSD indicator in range within ${\pm}1mm$. Conclusion : We can enforce output measurement and appliances check conveniently, and time was reduced and was able to raise efficiency of business. We were able to bring a cost reduction by substitution expensive commercialized equipment. Further It is necessary to makes a product as strong and slight materials, and improve convenience of use.

  • PDF

Excimer Laser Ablation of Polymer for Electroformed Mold (전주금형 제작을 위한 폴리머의 엑시머 레이저 어블레이션)

  • Lee Jae Hoon;Shin Dong Sig;Suh Jeong;Kim To Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.13-20
    • /
    • 2004
  • Manufacturing process for the microfluidic device can include such sequential steps as master fabrication, electroforming, and injection molding. The laser ablation using masks has been applied to the fabrication of channels in microfluidic devices. In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation of PET (polyethylene terephthalate) by the excimer laser radiation could be used successfully to make three dimensional master fur nickel mold insert. The mechanism fur ablative decomposition of PET with KrF excimer laser $({\lambda}: 248 nm, pulse duration: 5 ns)$ was explained by photochemical process, while ablation mechanism of PMMA (polymethyl methacrylate) is dominated by photothermal process, the .eaction between PC (polycarbonate) and KrF excimer laser beam generate too much su.face debris. Thus, PET was adopted in polymer master for nickel mold insert. Nickel electroforming using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

Measurement of Rock Slope Joint using 3D Image Processing (3차원 영상처리를 이용한 암반 사면의 절리 측정에 관한 연구)

  • Lee, Seung-Ho;Hwang, Jeong-Cheol;Sim, Seok-Rae;Jeong, Tae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.854-861
    • /
    • 2005
  • Studied accuracy and practical use possibility of joint measurement that using 3D laser scanner to rock slope. Measured joint of Rock slope and comparison applied 3 dimension laser scanner and clinometer. 3D laser scanning system preserves on computer calculating to 3 dimension coordinate scaning laser to object. and according to laser measurement method of interior, produce correct vector value from charge-coupled device(CCD) or laser reciver and telegram register and time measuring equipment. Create of object x, y, z point coordinates to 3 dimension space of computer. Such 3 dimension point datum (Point Clouds) forms relocate position informations that exist to practical space to computer space. Practical numerical values related between each other. Compared joint distribution and direction that measured by laser scanner and clinometer. By the result, Distribution of joint projected almost equally. Could get more joint datas by measurement of 3 dimension scanner than measured by clinometer. Therefore, There is effect that objectification of rock slope investigation data, shortening of investigation periods, investigation reduction of cost. could know that it is very effective method in joint measuring.

  • PDF

Laser Direct Patterning of Photoresist Layer for Halftone Dots of Gravure Printing Roll (그라비아 인쇄물의 망점 형성을 위한 포토레지스터 코팅층의 레이저 직접 페터닝)

  • Seo, Jung;Lee, Je-Hoon;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 2000
  • Laser direct patterning of the coated photoresit (PMER-NSG31B) layer was studied to make halftone dots on gravure printing roll. The selective laser hardening of photoresist by Ar-ion laser(wavelength : 333.6nm∼363.8nm) was controlled by the A/O modulator. The coating thickness in the range of 5㎛∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines formed under laser power of 200∼260㎽ and irradiation time of 4.4∼6.6$\mu$ sec/point were investigated after developing. The hardened width increased according to the increase of coating thickness. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line widths of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

  • PDF

Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring

  • Shin, Jae-Uk;Jeon, Haemin;Choi, Suyoung;Kim, Youngjae;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.801-818
    • /
    • 2016
  • To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.