• Title/Summary/Keyword: laser device

Search Result 816, Processing Time 0.033 seconds

A Two-dimensional Numerical Analysis of Semiconductor Laser Diodes) (반도체 레이저 디이오드의 2차원 수치해석)

  • 김형래;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.17-28
    • /
    • 1995
  • In this paper, we developed a two-dimensional numerical simulator which could analyze the stripe geometry semiconductor laser diodes by modifying the commercial semiconductor device simulator, MEDICI. In order to study the characteristics of semiconductor laser diodes, it is necessary to solve the Helmholtz wave equation and photon rate equation in addition to the basic semiconductor equations. Also the recombination rates due to the spontaneous and the stimulated emissions should be included, which are very important recombination mechanisms in semiconductor laser diodes. Therefore, we included the solution routines which analyzed the Helmholtz wave equation and the photon rate equation and two important recombination rates to simulate the semiconductor laser diodes. Then we simulated the gain-guiding and index-guiding DH(Double Heterostructure) semiconductor laser diodes to verify the validity of the implemented functions. The results obtained from simulation are well consistent with the previously published ones. This allows us to know the operating characteristics of DH laser diodes and is expected to use as a tool for optimum design.

  • PDF

A study on the micro wire joining using single mode fiber laser (Single mode fiber laser를 이용한 micro wire joining에 관한 연구)

  • Park K.W.;Na S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.663-664
    • /
    • 2006
  • In the electronic, medical, aerospace and automobile industries, many products and parts are manufactured by joining. Recently, as these get smaller, micro joining is becoming more and more important. In this study, micro wire-to-micro wire parallel joining was performed using single mode fiber laser. Maximum power of the fiber laser is 100 W. The CCD(Charge- Coupled Device, CCD) camera to observe the specimen was made up. The objective was applied to micro joining system to make a small spot size of laser beam. In order to control the target position, micro-multi-axis-stage was set up. This paper presents results for the single mode fiber laser joining of micro wires.

  • PDF

Laser Application and Nursing in the Field of Gynecology

  • Kim, Kyunghee
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.201-206
    • /
    • 2021
  • The recent development of new surgical techniques using lasers has increased the opportunities for open surgery involving minimal manipulation and faster and more accurate removal of lesions. The increasing use of laser technology requires nurses to play an extensive role. As assistants, nurses play an important role in maintaining the efficacy and safety of the laser device. In addition, they are also responsible for providing pre-and post-operative care to patients. Therefore, nurses should be aware of how to proceed with operative laser treatment for all surgical procedures and the steps for maintaining safety prior to, during, and after laser treatment. This review provides in-depth knowledge for nurses undertaking continuing education on lasers and patient care in the field of gynecology.

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

Development of Neuromuscular Stimulus System using Wearable Ultra-miniature Lighting Modules and its Verification of Clinical Effectiveness (의복형 초소형 발광모듈을 이용한 신경근육 자극 시스템 개발 및 임상적 효과 검증)

  • Park, Se-Hyeong;Lee, Jong-Shill;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.23-33
    • /
    • 2009
  • It can be used easily to reduce rehabilitation and treatment time if diagnostic and therapeutic devices are attached to cloth or body. Therefore we developed neuromuscular wearable ultra-miniature lighting modules which can improve the neuromuscular function and verified its clinical effectiveness. The system is based on the ultra-miniature lighting treatment module and there are two types of systems. One of them is designed as an attached type and the other type is combined with clothing. The wearable ultra-miniature lighting module is composed of controller (battery, MCU, bidirectional transmitter and receiver), cable, treatment medium generating device and other peripheral devices. To verify the clinical effectiveness of this device, we observed the difference of the strength of a muscle before and after 650nm and 25mW laser irradiation on the reflex point for 1 to 4 seconds. Among 48 patients having the degenerative osteoarthritis, the muscle strength before and after irradiation of laser was $21.8{\pm}7.99$ and $27.3{\pm}8.43$. According to the result, the muscle strength after treatment was significantly increased (p<0.01). To whom having difficulty in visiting to OPD(Out-Patient Department), doctors medically examine the patients and find the therapeutic point, attachment of this wearable ultra-miniature lighting module can function as self treatment (treating instrument) and treatment assist at home. If doctor can remotely control the patient and take part in treatment, the therapeutic device could contribute to prevention and care device.

Lasing Characteristics of GaAs-Based 1300 nm Wavelength Region InAs Quantum Dot Laser Diode (GaAs 기반 1300 nm 파장대역 InAs 양자점 레이저 다이오드의 발진 특성)

  • Kim, K.W.;Choa, N.K.;Song, J.D.;Lee, J.I.;Park, Jeong-Ho;Lee, Y.J.;Choi, W.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.266-271
    • /
    • 2009
  • We have investigated the lasing characteristics of GaAs-based 1300 nm wavelength region InAs Quantum Dot Laser Diode grown by Migration Enhanced Molecular Beam Epitaxy. Under a pulsed and CW operation, we observed the state switching of lasing wavelength from ground state (1302 nm) to excited state (1206 nm) due to the gain saturation of ground state. Under a pulsed operation, $J_{th}=92A/cm^2$, $\lambda_L=1311\;nm$ and under a CW operation, $J_{th}=247A/cm^2$, $\lambda_L=1320\;nm$.

New Input Device for Large Screen First Person Shooter Games (대화면 FPS 게임을 위한 새로운 레이저기반 입력장치)

  • Han, Ngoc-Son;Kim, Seong-Whan;Park, In-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.183-186
    • /
    • 2007
  • In this paper, we present a new game interface design for First Person Shooters (FPS). Previously, FPSs on computer are commonly played using keyboard/mouse or joystick along with PC display. We improve the communication environment between player and game world by means of new control system including large screen, laser gun, and directional device, which create a real life-like space for players. Because traditional display for FPS uses CRT, it cannot support large screen display due to limitation of CRT technology. We designed and implemented a new input device using laser recognizable display. We implemented a new FPS based on Quake III that is in accordance with the new devices. Results suggest that the combined interface creates a method which helps beginners to enjoy playing a FPS immediately and gives experienced players a new gaming experience.

  • PDF

Clinical Applications of a Non-ablative Fractional Dual Laser (1550/1927 nm)

  • Chang, Ho Sun;Lim, Nam Kyu
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.110-118
    • /
    • 2020
  • The non-ablative fractional dual laser is equipped with two types of lasers, 1550 nm and 1927 nm in one device, and was approved by the United States Food and Drug Administration in 2013. The advantages of the non-ablative fractional laser (NAFL) include fewer side effects such as erythema, edema, post-laser pigmentation, and scab formation. Thus, the NAFL is preferred by both practitioners and consumers because it is convenient and safe for use. The 1550 nm erbium glass and 1927 nm thulium lasers are representative NAFLs that have been developed separately and are often used as a single-wavelength laser with proven clinical efficacy in various indications. The 1550 nm wavelength laser penetrates the dermis layer and the 1927 nm wavelength laser is effective for epidermal lesions. Therefore, targeting the skin layer can be easily achieved with both the 1550 and 1927 nm lasers, respectively, or in combination. Clinically, the 1550 nm laser is effective in the treatment of mild to moderate sagging and wrinkles, scars, and resurfacing. The 1927 nm laser improves skin texture and treats skin pigmentation and wounds. It can also be used for drug delivery. The selection and utilization rate of NAFL has been increasing in recent times, due to changes in lifestyle patterns and the need for beauty treatments with fewer side effects and short downtime. In this study, we present a plan for safe and effective laser therapy through a review of literature. Clinical applications of the multifunctional NAFL are also described.