• Title/Summary/Keyword: laser dentistry

Search Result 571, Processing Time 0.033 seconds

CLINICAL APPLICATION OF ARGON LASER IN PEDIATRIC DENTISTRY (아르곤 레이저의 소아치과에서의 임상적 적용)

  • Lee, Mi-Na;Lee, Sang-Hoon;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.139-147
    • /
    • 1997
  • Argon laser used in this case report, is special in having two wavelength of 488, 514nm blue-green visible light spectrum. Blue light is used for composite resin polymerization and caries detection. Green light is used for soft tissue surgery and coagulation. Maximum absorption of this laser light occurs in red pigmentation such as hemoglobin. The argon laser may be well-suited for selective destruction of blood clots and hemangioma with minimal damage to adjacent tissues. Argon laser light penetrates tissue to the 1 mm depth, so its thermal intensity is lower than $CO_2$ laser light. Also, due to its short wavelength it can be focused in a small spot and even single gene can be excised by this laser and microscopy. After applicating argon laser to 4 patient for surgical procedure and to 1 patient for curing the composite resin, following results were obtained. 1. Improved visibility were gained due to hemostasis and no specific technique were needed according to easy recontouring of the tissue. 2. Ability to use by contact mode, tactile sense was superior but tissue dragability and accumulation of tissue on the tip needed sweeping motion. 3. Additive local anesthetic procedure was needed. 4. No suture and less curing time reduced chair time, this made argon laser available in pediatric dentistry.

  • PDF

Laser Treatment in Restorative Dentistry

  • Shintani, Hideaki
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.556-556
    • /
    • 2001
  • The application of the laser to the tooth hard tissue started from the removal of carious dentin with the laser performed by Goldman in 1964. With the development of the laser technology, the laser treatment with less descomfort such as pain, vibration, and noise, etc. has been attempted. Since it is difficult to give a suitable form for inlay restoration to a cavity prepared with laser, it has to be restored with adhesive resinous materials. However, various evaluation of adhesive properties of the resinous materials to lased tooth surface on the various conditions such as adgerent, irradiation condition, procedure of bond test, and adhesive materials used, etc. have been reported.(omitted)

  • PDF

A HISTOLOGICAL CHANGES AND CGRP EXPRESSION AFTER EXPOSURE INJURY BY ER:YAG LASER IN DENTAL PULP OF RAT (흰쥐 치수에서 Er:YAG laser에 의한 노출손상에 따른 조직학적 변화 및 CGRP 단백질의 발현)

  • Yang, Jae-Ho;Park, Jong-Tae;Kim, Kyu-Tag;Kim, Sang-Bong;Lee, Nan-Young;Lee, Sang-Ho;Kim, Heung-Joong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.11-17
    • /
    • 2008
  • The purpose of this study was to investigate early histological changes and calcitonin gene-related peptide (CGRP) expression in the dental pulp of the rat after Er:YAG laser preparation. Occlusal cavities were prepared in the upper first molars using either Er:YAG laser and conventional bur. At 48 hours after cavity preparation, the teeth were processed for hematoxylin-eosin stain and CGRP immunohistochemistry. The results were as follows : 1. The cavity floor by Er:YAG laser preparation was more irregular shape compared with those by bur preparation and there are some cracks in the directions of dentinal tubules. 2. There were more inflammatory cell infiltration and disruption of odontoblast in the dental pulp by Er:YAG laser preparation in comparison with the dental pulp by bur preparation. 3. CGRP expression in the pulp tissue by both Er:YAG laser and bur preparations were increased and higher than in the normal pulp. The expression pattern of CGRP was more strong in the pulp by Er:YAG laser preparation. These results indicate that Er:YAG laser is useful in the operative dentistry such as caries removal and cavity preparation if properly applied.

  • PDF

HEALING PROCESS OF DENTAL HARD TISSUES AND PULP TISSUE AFTER LASER IRRADIATION (레이저에 의해 손상된 치아경조직 및 치수조직의 치유과정에 대한 연구)

  • Kim, Chul-Soon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.20-42
    • /
    • 1998
  • The present study was designed to understand the basic principles of the laser system and to assess the optimal coditions of the Nd:YAG laser irradiation system in order to expand the use of the laser system in the dental field. The laser system used in this study was a pulsed-wave output type and the power level is 9 watts. The incisors of developing rats were irradiated with the laser system explained above for 0.5, 1, and 2 seconds giving energy density 71, 167, and 215 J/$cm^2$ respectively. The rats were sacrificed just after irradiation or 10 minutes and 10 days after irradiation. The specimens were examined with the stereoscope, light microscope and transmission electron microscope. The results are as follows: 1. The tissue removal efficiency (depth of the cavity formed) is increased with the energy density after Nd:YAG laser irradiation. 2. The carbonized area is increased with the energy density. Cracks and melted appearance are seen in all kinds of the energy densities. 3. The lacunae in the damaged alveolar bone by the laser irradiation were empty, while those in the newly formed bone were occupied with the osteocytes. The damaged alveolar bone was repaired by the osteoblasts and macrophages on the periphery of the bone matrix. 4. The damaged enamel was replaced by the loose connective tissues showing many kinds of cells. The ameloblasts were differntiated on the replaced loose connective tissue. 5. The damaged dentin was repaired by the irregular dentin formed by the odontoblasts differentiated from the mesenchymal cells migrated from the pulp core.

  • PDF

A STUDY ON THE EARLY DETECTION OF ENAMEL CARIES BY THE LUMINESCENCE EXCITED BY ARGON LASER (아르곤 레이저 광감각법의 법랑질 우식증 조기탐지 효과에 관한 연구)

  • Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.313-324
    • /
    • 1997
  • The aim of the present study was to describe an safe and convenient method for the early detection of enamel caries using laser fluorescence. Fluorescence from natually carious lesion of human teeth illuminated by an argon laser(488nm) was observed and photographed using barrier filter. Intact enamel was found to fluorescence with a yellowish light. Whereas, incipient caries lesions in the enamel were dearly visible as dark areas in contrast to the fluorescence surroundings. For evaluation of accuracy of this method, lesion depth measured by the laser fluorescence in light microscope was compared with that polarizing microscope. The results from the present study can be summarized as follows : 1. Enamel caries of smooth surface was observed as pale white spot and undefined outline in ordinary light. Whereas, lesion was clearly visible as dark spot in laser fluorescence. 2. There was no difference between ordinary light view and laser fluorescence in occlusal surface and interproximal surface. 3. There was no significant difference between the lesion depth observed by laser fluorescence with light microscope and polarizing microscope. Apparent correlation exists between two groups.

  • PDF

EFFECT OF LASER IRRADIATION ON DENTIN SURFACE STRUCTURE AND SHEAR BOND STRENGTH OF LIGHT-CURED GLASS IONOMER. (상아질 표면 구조와 광중합형 글라스 아이오노머의 전단강도에 대한 레이저 조사의 효과)

  • Park, Mi-Ryoung;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.76-92
    • /
    • 1998
  • The purpose of this study was to evaluate the possible efficacy of Nd-YAG laser as a dentin conditioner by observing the laser irradiation dentin surface under scanning electron micrograph and measuring shear bond strength of restored light-cured glass ionomer mold. Fifty intact premolars were prepared for shear bond strength tests. The teeth were randomly divided into five groups as follows; Group I. no treatment Group II. 10% poly acrylic acid, 20 sec Group III. laser treatment 2 w, 20 Hz, 2 sec Group IV. laser treatment 2 w, 20 Hz, 5 sec Group V. laser treatment 2 w, 20 Hz, 10 sec Samples of each group were restored with light-cured glass ionomer cement after dentin conditioning and then measuring the shear bond strength of each specimen were measured using universal testing machine. Additional ten premolars were prepared for SEM analysis The result from the this study can be summarized as follows. 1. Shear bond strength of polyacrylic acid-treated group (II) was significantly higher than other groups (p<0.05). 2. No statistically significant difference could be found between three laser-treated groups (III, IV, V) in shear bond strength(p>0.05) 3. According to the result of observation under SEM, Polyacrylic acid was shown to have removed the smear layer effectively and opened the dentinal tubules, whereas the laser has produced the irregular surface mainly composed of melted and fused structure. The microcracks found in laser-treated groups increased in number with irradiation time and formed the regular mesh-type in 10 sec-irradiation group. 4. The ultrastructural change of dentin surface created by laser irradiation was found to the improper for bonding of the glass ionomer restorative materials. And the lower shear bond strength of laser irradiated group might have been due to the failure to form the suit able dentin surface for the glass ionomer to penetrated into and form the proper micromechanical retention.

  • PDF

OPTICAL SENSITIVITY OF LASER FLUORESCENCE FOR INCIPIENT CARIES DETECTION (초기우식병소에 대한 레이저 fluorescence의 광학적 탐지감도)

  • Kim, Hyo-Suck;Kim, Wang-Kwen;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • The aim of this study was to evaluate the optical density of laser fluorescence for detection of incipient caries. Prepared and polished bovine enamel specimens were demineralized in a STPP solution for varying periods of time between 3 hrs. and 60 hrs. with an area of sound enamel retained on each specimen. The randomized specimens were analyzed for optical density of enamel demineralization using laser fluorescence. The specimens were sectioned and examined lesion depth by polarizing light microscope. Results were analyzed statistically with SAS program. The results from this study can be summarized as follows: 1. Optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was increased as demineralization time was increased(p<0.001). 2. Between optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was correlated highly(${\gamma}{\geq}0.74956$, p<0.001). 3. Regressive equation was obtained in this study as follows. Y=[X-0.260851]/0.000271(R-square:0.5618, p<0.001) (X:DENSITY, Y:DEPTH) In summary, optical density measured by laser fluorescence would be within the range of possibility to quantitatively presume demineralization amount of incipient caries lesion

  • PDF

A COMPARATIVE STUDY ON THE ANTICARIOGENICITY OF ENAMEL SURFACE ADJACENT TO RESIN RESTORATION POLYMERIZED BY VISIBLE LIGHT OR ARGON LASER. (가시광선과 아르곤 레이저에 의해 중합된 레진 수복물 주변 법랑질의 항우식효과에 관한 비교연구)

  • Park, Young-Soo;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.840-858
    • /
    • 1996
  • The main purpose of this study was to evaluate the anticariogenic effect of argon laser. Histological observations on lesion initiation and progression were performed under the polarized microscope. The results from the present study can be summarized as follows; 1. The specimens of laser cured group were shown to have more irregular and discontinuous lesion body in general than visible light cured group with rather continuous positive birefringence. 2. With lesion initiation and progression, almost all the specimens showed deeper body of lesion with shallower intact surface zone in the visible light cured group than the laser cured group(p<0.05). When the comparision was made between the two argon laser cured groups, the single-cure group showed deeper lesion body and the shallower surface layer than double-cure group. 3. Based upon the above mentioned results of this study, it can be assumed that the use of argon laser in the procedure of resin polymerization may provide the child and adolescent patient population with anticariogenic effect as well as efficient polymerization. Further studies using various materials and experimental conditions are being encouraged.

  • PDF

AN EXPERIMENTAL STUDY ON THE TEMPERATURE CHANGE OF THE PULP CHAMBER INDECED BY THE CO2 LASER IRRADIATION (CO2레이저 조사에 따른 치수강내 온도변화에 관한 실험적 연구)

  • Lee, Jong-Man;Park, Dong-Soo;Lee, Chang-Young;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.10 no.1
    • /
    • pp.43-53
    • /
    • 1984
  • The purpose of this study was to suggest the use of laser energy in the the field of operative dentistry without considerable pulpal damage and significant effects on the dental hard tissue, additionally to find out the methods which could control the temperature rise. The laser beam (CW $CO_2$ laser, output: 6W, beam diameter: 1.5mm) was focused on the center of the occlusal surface of extracted lower molars. A Ge lens (focal length 200mm) was used to focus the primary laser beam. In order to vary the total amount of the same irradiated energy, experimental subjects were devided into three groups: continuously irradiated group, intermittently irradiated group, and water-cooled group after continuous laser irradiation. Temperature changes in the pulp chamber after laser irradiation were measured and recorded by the digital thermometer and recorder. The following results were obtained: 1. Temperatures in the pulp chamber were raised up in the order of the continuously irradiated group, intermittently irradiated group, water-cooled group after continuous laser irradiation. 2. In the continuously irradiated group, the temperature was raised up $1.7^{\circ}C$, $3.8^{\circ}C$, $7.3^{\circ}C$, $17.2^{\circ}C$ after 2, 4, 8, 16 seconds of the irradiation of laser. In the intermittently irradiated group, the changes were $1.2^{\circ}C$, $3.4^{\circ}C$, $6.3^{\circ}C$, $11.1^{\circ}C$, respectively. In the water-cooled group after continuous laser irradiation, the changes were $0.0^{\circ}C$, $0.8^{\circ}C$, $1.6^{\circ}C$, $6.9^{\circ}C$, respectively. 3. The starting time of temperature rise in the pulp chamber had no connection with laser irradiation time.

  • PDF

A STUDY ON THE PHYSICAL PROPERTIES OF RESTORATIVE MATERIALS FOR PHOTO-POLYMERIZATION OF ARGON LASER (아르곤 레이저를 이용한 광중합 수복재의 물리적 성질에 관한 연구)

  • Ju, Sang-Ho;Choi, Hyung-Jun;Kim, Seong-Oh;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.368-382
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the results of argon laser for 5 seconds, argon laser for 10 seconds, and visible light for 40 seconds photo-polymerization in compressive strength, microhardness, curing depth, temperature rising during polymerization, and polymerization shrinkage. Hybrid type composite resin(Z-100) and compomer(Dyract) were used to be compared. The compressive strength was measured by an Instron(1mm/min cross head speed) in 60 specimens and the microhardness of the surface was expressed by Vickers Hardness Number(VHN) in 30 specimens. The curing depth was evaluated comparing the different values of upper and lower VHN according to irradiation time and thickness for the light source polymerization in 60 specimens. The temperature rising during photopolymerization was observed by the temperature change with thermocouple sensitizer beneath 40 specimens at the argon laser for 10 seconds and visible light 40 seconds irradiation. The polymerization shinkage was evaluated by calculating the decrease of % volume by using a dilatometer in 30 specimens. The results were as follows ; 1. In the case of compressive strength, the argon laser polymerization groups were higher than visible light group in Z-100 (p<0.05). In Dyract, the argon laser 5 seconds group did not show a significant difference with the visible light 40 seconds group. The argon laser 10 seconds group showed the markedly low value when compared with other groups (p<0.05) 2. In microhardness, Z-100 was better than Dyract when comparing by VHNs (p<0.05); however, there was not a significant difference between two materials in the visible light 40 seconds group and the argon laser 10 seconds group. 3. In the study of curing depth, Z-100 showed the consistent polymerization in argon laser irradiation because there was no difference in the VHN decrease according to the thickness change. Over the thickness control, the results did not show a significant difference between visible light and argon laser group in Z-100; however, in the case of Dyract, the visible light 40 seconds group was better than the argon laser groups(p<0.05). 4. There was a significant difference between the two materials in temperature rising during polymerization (p<0.05), but not a significant difference between irradiation times, 5. There was not a significant difference between the two materials in polymerization shrink age. The argon laser 5 seconds group was smaller than the other groups (p<0.05). It could be concluded that Z-100 polymerization was recommended to use the argon laser for reduction of the irradiation time while Dyract was recommended to use the visible light polymerization.

  • PDF