• Title/Summary/Keyword: laser based ultrasound

Search Result 29, Processing Time 0.033 seconds

Development of Laser-Based Resonant Ultrasound Spectroscopy(Laser-RUS) System for the Detection of Micro Crack in Materials (재료의 미세결함 검출을 위한 레이저 공명 초음파 분광(Laser-RUS)시스템 개발)

  • Kang, Young-June;Kim, Jin-Soo;Park, Seung-Kyu;Baik, Sung-Hoon;Choi, Nag-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Non-contacting, laser-based resonant ultrasound spectroscopy (L-RUS) was applied to characterize the microstructure of a material. L-RUS is widely used by virtue of its many features. Firstly, L-RUS can be used to measure mechanical damping which related to the microstructural variations (grain boundary, grain size, precipitation, defects, dislocations etc). Secondly, L-RUS technology can be applied to various areas, such as the noncontact and nondestructive quality test for precision components as well as noncontact and nondestructive materials characterization. In addition, L-RUS technology can measure the whole field resonant frequency at once. In this paper, we evaluated material characteristics such as resonant frequency, nonlinear propagation characteristic through the development of Laser-Based Resonant Ultrasound spectroscopy (Laser-RUS) System for the detection of Micro Crack in Materials.

Development of Self-compensated Technique for Evaluation of Surface-breaking Crack by Using Laser Based Ultrasound

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It is required to evaluate nondestructively depth of surface-breaking cracks in structures. In this paper, the self-compensated technique by laser-based ultrasound is used to measure the depth of surface-breaking defect. Optical generation of ultrasound produces a well defined pulse with reliable frequency content. It is broad banded and suitable for measurement of attenuation and scattering over a wide frequency range. The self-calibrated signal transmission data of surface wave shows good sensitivity as a practical tool far assessment of surface-breaking defect depth. It is suggested that the relationship between the signal transmission and crack depth can be used to predict the surface-breaking crack depths in structures.

Novel Laser Ultrasonic Receiver for Industrial NDE

  • Pouet, B.;Breugnot, S.;Clemenceau, P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.380-389
    • /
    • 2006
  • A new laser-based ultrasonic receiver that is based on multi-channel interferometry is shown to be well suited for robust and sensitive detection of ultrasound in industrial environment. The proposed architecture combines random-quadrature detection with detector arrays and parallel multi-speckle processing. The high sensitivity is reached, thanks to the random phase distribution of laser speckle caused by surface roughness. High-density parallel signal processing is achieved by using a simple demodulation technique based on signal rectification. This simple detection scheme is also demonstrated for rejection of the laser intensity noise, making possible the use of lower cost laser without reduction in performances. Results demonstrating this new principle of operation and its performances are presented.

Evaluation of Depth of Surface-breaking Slit by Nondestructive Self-calibrating Technique Using Laser Based Ultrasound (레이저 유도 초음파 및 자기보상 기법을 이용한 재료의 표면균열 깊이 비파괴 평가)

  • Lee, Jun-Hyeon;Choe, Sang-U;Ha, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.745-753
    • /
    • 2002
  • It is required to evaluate nondestructively the crack depth of surface-breaking cracks for the assurance of safety of structure. Optical generation of ultrasound produces well defined pulses with a repeatable frequency content, that are free of any mechanical resonances; they are broad band and are ideal for the measurement of attenuation and scattering over a wide frequency range. Self-calibrating surface signal transmission measurement is very sensitive and practical tool for surface-breaking crack depth. In this paper, the self-calibrating technique by laser-based ultrasound is used to evaluate the depth of surface-breaking crack of material. It is suggested that the relationship between the signal transmission and crack depth can be used as a practical model for predicting the surface-breaking crack depths from the signal transmission measured in structure.

Nondestructive Characterization of Materials Using Laser-Generated Ultrasound

  • Park, Sang-Woo;Lee, Joon-Hyun
    • International Journal of Reliability and Applications
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2004
  • It is recently well recognized that the technique for the one-sided stress wave velocity measurement in structural materials provides measurement in structural materials provides valuable information on the state of the material such as quality, uniformity, location of cracked or damaged area. This technique is especially effective to measure velocities of longitudinal and Rayleigh waves when access to only one surface of structure is possible. However, one of problems for one-sided stress wave velocity measurement is to get consistent and reliable source for the generation of elastic wave. In this study, the laser based surface elastic wave was used to provide consistent and reliable source for the generation of elastic wave into the materials. The velocities of creeping wave and Rayleigh wave in materials were measured by the one-sided technique using laser based surface elastic wave. These wave velocities were compared with bulk wave velocities such as longitudinal wave and shear wave velocities to certify accuracy of measurement. In addition, the mechanical properties such as poisson's ratio and specific modulus(E/p) were calculated with the velocities of surface elastic waves.

  • PDF

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging

  • Nam, Seung Yun;Emelianov, Stanislav Y.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • Although various ophthalmic imaging methods, including fundus photography and optical coherence tomography, have been applied for effective diagnosis of ocular diseases with high spatial resolution, most of them are limited by shallow imaging penetration depth and a narrow field of view. Also, many of those imaging modalities are optimized to provide microscopic anatomical information, while functional or cellular information is lacking. Compared to other ocular imaging modalities, photoacoustic imaging can achieve relatively deep penetration depth and provide more detailed functional and cellular data based on photoacoustic signal generation from endogenous contrast agents such as hemoglobin and melanin. In this paper, array-based ultrasound and photoacoustic imaging was demonstrated to visualize pigmentation in the eye as well as overall ocular structure. Fresh porcine eyes were visualized using a real-time ultrasound micro-imaging system and an imaging probe supporting laser pulse delivery. In addition, limited photoacoustic imaging field of view was improved by an imaging probe tilting method, enabling visualization of most regions of the retina covered in the ultrasound imaging.

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.