• 제목/요약/키워드: laser application

검색결과 1,253건 처리시간 0.028초

저단계 레이저 치료의 한방안이비인후피부과 활용에 대한 논문 경향 분석 (Reviewing Research on the Application of Low Level Laser Therapy in Ophthalmology, Otolaryngology and Dermatology of Korean Medicine)

  • 장호탁;서형식
    • 한방안이비인후피부과학회지
    • /
    • 제26권1호
    • /
    • pp.63-74
    • /
    • 2013
  • Objective : Low level laser therapy(LLLT) is conjugated many different diseases such as skin disease, nervous system disease, cardiovascular disease, etc. This study was tried to survey the conjugation of LLLT in field of ophthalmology, otolaryngology and dermatology of Korean Medicine. Methods : In this study, LLLT deal with the field of ophthalmology, otolaryngology and dermatology was searched at Pubmed and NDSL. We searched Pubmed and NDSL with the title "Laser Therapy and Low-Level" for the last 10 years and analyzed disease, laser type, sample size, effect, journal and year. Results : Using Pubmed and NDSL, 8 treatises were researched. About 8 treatises, 7 treatises were papers in field of dermatology, 1 treatise was ophthalmology. And about 8 treatises, 6 treatises were foreign papers and 2 treatises were domestic papers on clinical application of laser status. Mainly used type of laser was a He-Ne laser and Diode laser. The diseases were ocular hypertension, acne, ulcers in patients with leprosy sequelae, freckles, segmental-type vitiligo lesions, diabetes-linked skin lesion, facial skin melanin and elasticity, atopic dermatitis symptom. As a result, we found that treat group had more improvement than control group in 7 of the 8 treatises, that treat group had no difference control group on effect significantly only 1 treatise. Conclusions: As therapeutic tool, LLLT's application range is very wide in the field of ophthalmology, otorhinolaryngology, and dermatology. Keep up with the increasing interest of domestic and foreign about laser therapy, clinical tries on the use of laser will be studied steadily. It is necessary to have sustained attention and research on the point of view of the Korean Medicine.

대면적 레이저 가공을 위한 가감속 파라미터가 가공오차에 미치는 영향 (Effects of Acceleration and Deceleration Parameters on the Machining Error for Large Area Laser Processing)

  • 이제훈;윤광호;김경한
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.721-728
    • /
    • 2014
  • In this paper, it is proposed a method of optimizing path parameters for large-area laser processing. On-the-fly system is necessary for large-area laser processing of uniform quality. It is developed a MOTF(Marking On-The-Fly) board for synchronizing the stage and scanner. And it is introduced the change of the error due to the change of parameters and algorithm for large-area laser processing. This algorithm automatically generates stage path and a velocity profile using acceleration and deceleration parameters. Since this method doesn't use a G-code, even if without expert knowledge, it has an advantage that can be accessed easily. Angle of one of the square of $350{\times}350mm$ was changed from $50^{\circ}$ to $80^{\circ}$ and analyzed the error corresponding to the value of Ta. It is calculated the value of Ta of the best with a precision of 20um through measurement of accuracy according to the Ta of each angle near the edge.

THE WELDABILITY AND MECHANICAL BEHAVIOR OF MEDIUM CARBON STEEL IN CW Nd:YAG LASER WELDING

  • Bang, Han-Sur;Kim, Young-Pyo;Seiji Katayama;Chang, Woong-Seong;Lee, Chang-Woo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.626-631
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. ill general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAG laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

The Weldability and Mechanical Behavior of Medium Carbon Steel in CW Nd:YAG Laser Welding

  • Bang, H.S.;Kim, Y.P.;Katayama, S.;Chang, W.S.;Lee, C.W.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.15-20
    • /
    • 2002
  • This paper describes the weldability and mechanical behavior of JIS S45C medium carbon steel (corresponding to KS SM45C and SAE 1045) for machine structures in CW Nd:YAG laser welding. In general, medium carbon steels have a limited application to the industrial fields in spite of good mechanical characteristics. This is due to welding difficulty because of the high carbon contents and impurities in this material. Therefore, in this study the laser weldability of medium carbon steel with adjusted contents of S and P has been investigated in order to extend the application to medium carbon steels. Several experiments and numerical simulations have been conducted to determine the characteristics of mechanical behavior in CW Nd:YAC laser welds. The results of the simulations concur with the experiment results. From the result of this study, the application possibility of CW Nd:YAG laser welding to medium carbon steel has been confirmed. Also, the appropriateness of mechanical behavior simulation has been verified to analyze and predict the welding phenomena.

  • PDF

Application of DFB Diode Laser Sensor to Reacting Flow (I) - Estimation and Application to Laminar Flames -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1550-1557
    • /
    • 2002
  • Diode laser sensor for measuring gas temperature and species concentration in combustion chamber was developed using 2.0 tim distributed feed back lasers. To evaluate the measurement sensitivity of diode laser sensor system, CO2 survey spectra near 2.0 Um were measured and compared with the calculated one. This diode laser absorption sensor was applied to measure gas temperatures in a premixed flat flame of CH$_4$-air mixture. Experimental results were in good agreement with the values by an R-type thermocouple within 6.12%. In addition, successful demonstration of measurement of gas temperature and species concentration in a soot flame showed the promising possibility of diode laser absorption sensors for practical combustion system with non-intrusive method.

레이저를 이용한 스탬핑 제품의 스프링백 형상교정에 관한 연구 (A Study on the Shape Correction of Stamped Parts by the Irradiation of Laser)

  • 심현보;김동우
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.519-530
    • /
    • 2009
  • The study is concerned with shape correction of stamped product using the laser irradiation. As a fundamental study, laser irradiation process has been analyzed through the thermo-mechanical FE analysis. For the purpose of validation, laser scanning experiment has been carried out also. Since the deformation mechanism involved in the laser scanning is extremely complicated due to the highly temperature dependent material properties, the determination of laser scanning pattern is not easy for the application of real stamped parts. A simplified method for the application of springback correction has been suggested with the thermo-mechanical FE analysis.

알루미나 세라믹 소재의 초단파 레이저 어블레이션량 연구 (Ablation rate study using short pulsed laser subjected to Alumina medium)

  • 김경한;박진호
    • 한국레이저가공학회지
    • /
    • 제18권4호
    • /
    • pp.17-22
    • /
    • 2015
  • In this paper, ablation rate of $Al_2O_3$ ceramics by femtosecond laser fluence is derived with experimental method. The automatic three axis linear stage makes laser optics to move with high spatial resolution. With 10 times objective lens, minimal pattern width of $Al_2O_3$ is measured in the focal plane. Ablated surface area is shown as linear tendency increasing number of machining times with various laser power conditions. Machining times is most sensitive condition to control $Al_2O_3$ pattern width. Also, the linear increment of pattern width with laser power change is investigated. In high machining speed, the ablation volume rate is more linear with fluence because pulse overlap is minimized in this condition. Thermal effect to surrounding medium can be minimized and clean laser process without melting zone is possible in high machining speed. Ablation volume rate decelerates as increasing machining times and multiple machining times should be considered to achieve proper ablation width and depth.

Adaptable Center Detection of a Laser Line with a Normalization Approach using Hessian-matrix Eigenvalues

  • Xu, Guan;Sun, Lina;Li, Xiaotao;Su, Jian;Hao, Zhaobing;Lu, Xue
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.317-329
    • /
    • 2014
  • In vision measurement systems based on structured light, the key point of detection precision is to determine accurately the central position of the projected laser line in the image. The purpose of this research is to extract laser line centers based on a decision function generated to distinguish the real centers from candidate points with a high recognition rate. First, preprocessing of an image adopting a difference image method is conducted to realize image segmentation of the laser line. Second, the feature points in an integral pixel level are selected as the initiating light line centers by the eigenvalues of the Hessian matrix. Third, according to the light intensity distribution of a laser line obeying a Gaussian distribution in transverse section and a constant distribution in longitudinal section, a normalized model of Hessian matrix eigenvalues for the candidate centers of the laser line is presented to balance reasonably the two eigenvalues that indicate the variation tendencies of the second-order partial derivatives of the Gaussian function and constant function, respectively. The proposed model integrates a Gaussian recognition function and a sinusoidal recognition function. The Gaussian recognition function estimates the characteristic that one eigenvalue approaches zero, and enhances the sensitivity of the decision function to that characteristic, which corresponds to the longitudinal direction of the laser line. The sinusoidal recognition function evaluates the feature that the other eigenvalue is negative with a large absolute value, making the decision function more sensitive to that feature, which is related to the transverse direction of the laser line. In the proposed model the decision function is weighted for higher values to the real centers synthetically, considering the properties in the longitudinal and transverse directions of the laser line. Moreover, this method provides a decision value from 0 to 1 for arbitrary candidate centers, which yields a normalized measure for different laser lines in different images. The normalized results of pixels close to 1 are determined to be the real centers by progressive scanning of the image columns. Finally, the zero point of a second-order Taylor expansion in the eigenvector's direction is employed to refine further the extraction results of the central points at the subpixel level. The experimental results show that the method based on this normalization model accurately extracts the coordinates of laser line centers and obtains a higher recognition rate in two group experiments.

Underwater Laser Cutting of Thick Stainless Steel in Various Cutting Directions for Application to Nuclear Decommissioning

  • Shin, Jae Sung;Oh, Seong Y.;Park, Seung-Kyu;Kim, Taek-Soo;Park, Hyunmin;Lee, Jonghwan
    • 방사성폐기물학회지
    • /
    • 제19권3호
    • /
    • pp.279-287
    • /
    • 2021
  • For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm·min-1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm·min-1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm·min-1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.

$CO_2$ 레이저 빔에 의한 $Si_3N_4$ 세라믹의 반응연구 (Surface Transform of $Si_3N_4$ Ceramics Irradiated by $CO_2$ Laser Beam)

  • 김선원;이제훈;서정;조해용;김관우
    • 한국레이저가공학회지
    • /
    • 제9권2호
    • /
    • pp.23-30
    • /
    • 2006
  • Silicon Nitride $(Si_3N_4)$, which is widely used in a variety of applications, is hard-to-machine due to its high hardness. At high temperature (e.g. above $1000^{\circ}C)$, however, the machinability can be greatly improved. In this work, we used a $CO_2$ laser with a high absorptivity to $Si_3N_4$ of 0.9 to locally heat the surface of a rotating $Si_3N_4$ rod on a lathe. In order to examine the effects of the laser-assisted heating on hardness, an $Si_3N_4$ rod is heated to temperatures from 900 to $1800^{\circ}C$ and is rotated at speeds from 440-900 rpm in experiments. When the rod is naturally cooled to room temperature, we measured the Vickers hardness (Hv); and observed the surface of HAZ using a scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) was used for ingredient analysis. Results showed that when heated at $1600^{\circ}C$, the hardness of $Si_3N_4$ decreased from 1500 Hv to 1000 Hv. Also, in order to predict the depth of HAZ, we numerically analyzed the laser-assisted heating of $Si_3N_4$.

  • PDF