• Title/Summary/Keyword: large-subunit rDNA

Search Result 115, Processing Time 0.022 seconds

Cellulose degrading basidiomycetes yeast isolated from the gut of grasshopper in Korea (한국의 메뚜기의 장에서 분리된 Cellulose를 분해하는 담자균 효모)

  • Kim, Ju-Young;Jang, Jun Hwee;Park, Ji-Hyun;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Limtong, Savitree;Subramani, Gayathri;Sung, Gi-Ho;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.362-368
    • /
    • 2018
  • Grasshoppers play vital role in the digestion of photosynthetically fixed carbons. With the aid of intestinal microflora, the grasshopper can degrade leaves constituents such as cellulose and hemicellulose. The purpose of this study was to examine cellulolytic yeast isolates from the gut of grasshoppers collected in Gyeonggi Province, South Korea. Among the yeast isolates, ON2, ON17 (two strains), and ON6 (one strain) showed positive cellulolytic activity in the CMC-plate assay. The sequence analyses of D1/D2 domains of the large subunit rDNA gene and the internal transcribed spacer (ITS) regions revealed that the strains ON2 and ON17 were most closely related to Papiliotrema aspenensis CBS $13867^T$ (100%, sequence similarity in D1/D2 domains; 99.4% sequence similarity in ITS) and strain ON6 related to Saitozyma flava (100% in D1/D2 domains; 99.0% in ITS). All these three yeast strains are capable of degrading cellulose; therefore, the members of endosymbiotic yeasts may produce their own enzymes for carbohydrate degradation and convert mobilized sugar monomers to volatile fatty acids. Thus, the endosymbiotic yeast strains ON2, ON17 (represents the genus Papilioterma) and ON6 (Saitozyma) belonging to the family Tremellomycetes, are unreported strains in Korea.

Isolation and Characterization of Ethanol-Producing Schizosaccharomyces pombe CHFY0201

  • Choi, Gi-Wook;Um, Hyun-Ju;Kim, Mi-Na;Kim, Yule;Kang, Hyun-Woo;Chung, Bong-Woo;Kim, Yang-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.828-834
    • /
    • 2010
  • An ethanol-producing yeast strain, CHFY0201, was isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w/v) ethanol at $30^{\circ}C$. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rDNA gene and the internally transcribed spacer (ITS) 1+2 regions, suggested that the CHFY0201 was a novel strain of Schizosaccharomyces pombe. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. pombe CHFY0201 in YPD media containing 9.5% total sugars were $0.59{\pm}0.01$ g/l/h and $88.4{\pm}0.91%$, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) powder in a 5-l lab-scale jar fermenter at $32^{\circ}C$ for 66 h with an agitation speed of 120 rpm. Under these conditions, S. pombe CHFY0201 yielded a final ethanol concentration of $72.1{\pm}0.27$ g/l and a theoretical yield of $82.7{\pm}1.52%$ at a maximum ethanol productivity of $1.16{\pm}0.07$ g/l/h. These results suggest that S. pombe CHFY0201 is a potential producer for industrial bioethanol production.

Identification of Podosphaera xanthii as the causal agent of powdery mildew disease affecting Echinacea purpurea in Korea (에키나시아 흰가루병을 일으키는 Podosphaera xanthii 동정)

  • Choi, In-Young;Hong, Sun-Hee;Lee, Yong-Ho;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.48 no.3
    • /
    • pp.337-343
    • /
    • 2020
  • During the extensive forays for discovering the biodiversity of phytopathogenic fungi in Korea, powdery mildew-affected purple coneflowers (Echinacea purpurea) were frequently found. Since 2004, nine samples have been deposited in the Korea University Herbarium. The initial symptoms include white, evanescent mycelia and irregular patches on mature leaves. Mild symptoms in the form of discolored lesions are also noticed on the stem and petal of the affected plants. Based on the morphological characteristics of the anamorph and the phylogenetic analysis of the internal transcribed spacers (ITS) and large subunit (LSU) rDNA sequences, the causal fungus was identified as Podosphaera xanthii. This is the first report that identifies the causal agent of powdery mildew disease affecting purple coneflower in Korea.

Unrecorded Fungi Isolated from Rhizosphere Soil of Fallopia sachalinensis in Dokdo Islands (독도 왕호장근 근권 토양에서 분리된 미기록 균류)

  • Young-Hyun You;Han Jung Sung;Manh Ha Nguyen;Jong Myong Park;Ji Won Hong;Won-Jae Chi;Kim Bomi;Dae Ho Kim
    • The Korean Journal of Mycology
    • /
    • v.51 no.3
    • /
    • pp.251-257
    • /
    • 2023
  • We isolated fungi from the rhizosphere of Fallopia sachalinensis in Dokdo islands. Morphological and molecular characters, based on the internal transcribed spacer (ITS), and partial large subunit (LSU) or partial beta-tubulin genes, were used to identify the isolated fungi. The results revealed the fungi isolated from the Fallopia rhizosphere to be Penicillium striatisporum and Gongronella sichuanensis. Given that these species have never previously been recorded in Korea, we have described the morphological and molecular characteristics of these fungi in this study.

Isolation and characterization of cellulolytic yeast belonging to Moesziomyces sp. from the gut of Grasshopper (메뚜기의 내장에서 분리한 Moesziomyces 속에 속하는 셀룰로오스 분해 효모의 분리 및 특성)

  • Kim, Ju-Young;Jung, Hee-Young;Park, Jong-Seok;Cho, Sung-Jin;Lee, Hoon Bok;Sung, Gi-Ho;Subramani, Gayathri;Kim, Myung Kyum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.234-241
    • /
    • 2019
  • An intensive interaction between yeasts and insects has highlighted their relevance for attraction to food and for the insect's development and behavior. Yeast associated in the gut of insects secretes cellulase which aided in the food digestion (cellulose degradation). Three strains of cellulose-degrading yeast were isolated from the gut of adult grasshoppers collected in Gyeonggi Province, South Korea. The strains $ON22^T$, $G10^T$, and $G15^T$, showed positive cellulolytic activity in the carboxymethyl cellulose (CMC)-plate assay. The phylogenetic tree based on sequence analysis of D1/D2 domains of the large subunit rRNA gene and the internal transcribed spacer (ITS) regions revealed that the strains $ON22^T$ (100 and 98.4% sequence similarities in D1/D2 domains and ITS) and $G10^T$ (99.8 and 99.5% in D1/D2 domain and ITS region) were most closely related to the species Moesziomyces aphidis JCM $10318^T$; $G15^T$ (100% in D1/D2 domains and ITS) belongs to the species Moesziomyces antarcticus JCM $10317^T$, respectively. Morphology and biochemical test results are provided in the species description. Cellulase with its massive applicability has been used in various industrial processes such as biofuels like bioethanol productions. Therefore, this is the first report of the cellulolytic yeast strains $ON22^T$, $G10^T$, and $G15^T$ related to the genus Moesziomyces in the family Ustilaginaceae (Ustilaginales), in Korea.