• Title/Summary/Keyword: large-span tunnel

Search Result 50, Processing Time 0.024 seconds

Analysis of stability control and the adapted ways for building tunnel anchors and a down-passing tunnel

  • Xiaohan Zhou;Xinrong Liu;Yu Xiao;Ninghui Liang;Yangyang Yang;Yafeng Han;Zhongping Yang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.395-409
    • /
    • 2023
  • Long-span suspension bridges have tunnel anchor systems to maintain stable cables. More investigations are required to determine how closely tunnel excavation beneath the tunnel anchor impacts the stability of the tunnel anchor. In order to investigate the impact of the adjacent tunnel's excavation on the stability of the tunnel anchor, a large-span suspension bridge tunnel anchor is utilised as an example in a three-dimensional numerical simulation approach. In order to explore the deformation control mechanism, orthogonal tests are employed to pinpoint the major impacting elements. The construction of an advanced pipe shed, strengthening the primary support. Moreover, according to the findings the grouting reinforcement of the surrounding rock, have a significant control effect on the settlement of the tunnel vault and plug body. However, reducing the lag distance of the secondary lining does not have such big influence. The greatest way to control tunnel vault settling is to use the grout reinforcement, which increases the bearing capacity and strength of the surrounding rock. This greatly minimizes the size of the tunnel excavation disturbance area. Advanced pipe shed can not only increase the surrounding rock's bearing capacity at the pipe shed, but can also prevent the tunnel vault from connecting with the disturbance area at the bottom of the anchorage tunnel, reduce the range of shear failure area outside the anchorage tunnel, and have the best impact on the plug body's settlement control.

Wind-tunnel study of wake galloping of parallel cables on cable-stayed bridges and its suppression

  • Li, Yongle;Wu, Mengxue;Chen, Xinzhong;Wang, Tao;Liao, Haili
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.249-261
    • /
    • 2013
  • Flexible stay cables on cable-stayed bridges are three-dimensional. They sag and flex in the complex wind environment, which is a different situation to ideal rigid cylinders in two-dimensional wind flow. Aerodynamic interference and the response characteristics of wake galloping of full-scale parallel cables are potentially different due to three-dimensional flows around cables. This study presents a comprehensive wind tunnel investigation of wake galloping of parallel stay cables using three-dimensional aeroelastic cable models. The wind tunnel study focuses on the large spacing instability range, addressing the effects of cable separation, wind yaw angle, and wind angle of attack on wake galloping response. To investigate the effectiveness of vibration suppression measures, wind tunnel studies on the transversely connected cable systems for two types of connections (flexibility and rigidity) at two positions (mid-span and quarter-span) were also conducted. This experimental study provides useful insights for better understanding the characteristics of wake galloping that will help in establishing a guideline for the wind-resistant design of the cable system on cable-stayed bridges.

A Study of Quality Improvement of the Exterior Inspection Using Tunnel Scanning System (터널스캐닝 시스템을 이용한 외관조사 품질개선에 관한 연구)

  • Jee Kee-Hwan;Chung Jae-Min;Hong Sa-Jang;Kim Su-Un
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.234-239
    • /
    • 2004
  • Recently, the tunnel structures are increasing. And the tunnels are to be large diameter tunnel and long. Therefore, inspection, repair, and maintenance of tunnels are an extremely important part of infrastructure management, with particular technical and safety considerations arising from the very nature of underground construction. To inspect surface state of tunnels, concrete structures, it must generally use method of conventional visual inspection, but this method is very not objective. To measure the width, length, position, direction of a crack, it is very difficult, when the tunnel is long span and high rise. Thus, to make up for this demerits, in this paper is proposed the Tunnel Scanning System that we can check conditions of the tunnel structures quickly, detect the detailed data objectively, count automatically the width of a crack by the original software and follow the trend of long tenn changes in the condition of a tunnel.

  • PDF

A Study for Concrete Crack Minimize Methods in Large Section Tunnel Lining (라이닝 시공특성을 고려한 대단면 4차로 터널 균열최소화 방안에 대한 연구)

  • Choo, Seok-Yeon;Lee, Jae-Sung;Koh, Sung-Yil;Kim, Sang-Whang;Ra, Kyong-Woong;Kim, Tae-Hyok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.621-628
    • /
    • 2005
  • The concrete lining in tunnel performs structural and nonstructural functions. The concrete lining works as a structural member for released load and residual water pressure in NATM tunnel system. Also concrete lining used for finishing the tunnel surface. The initial crack of concrete lining is reported because of difficulties in construction process, which concrete is injected into 30$\sim$40cm narrow gap between lining form and tunnel surface through 500${\times}$600mm small injection holes in the form. In this paper, we research a reason of initial crack occurrence by the case study of 4 lane wide span tunnel, and propose an improved method for crack minimization in construction process. We verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Experimental and numerical studies on VIV characteristics of π-shaped composite deck of a cable-stayed bridge with 650 m main span

  • Wei Lei;Qi Wang;Haili Liao;Chengkai Shao
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.93-107
    • /
    • 2024
  • A π-shaped composite deck in the form of an open section is a type of blunt body that is highly susceptible to wind loads. To investigate its vortex-induced vibration (VIV) performance, a large-scale (1/20) section model of a cable-stayed bridge with a main span of 650 m was tested in a wind tunnel. The vibration suppression mechanism of the countermeasures was analyzed using computational fluid dynamic. Experimental results demonstrate that the vertical and torsional VIVs of the original section can be suppressed by combining guide plates with a tilt angle of 35° and bottom central stabilizing plates as aerodynamic countermeasures. Numerical results indicate that the large-scale vortex under the deck separates into smaller vortices, resulting in the disappearance of the von Kármán vortex street in the wake zone because the countermeasures effectively suppress the VIVs. Furthermore, a full-bridge aeroelastic model with a scale of 1/100 was constructed and tested to evaluate the wind resistance performance and validate the effectiveness of the proposed countermeasures.

Estimation of Wind Pressure Coefficients on Even-Span Greenhouse Built in Reclaimed Land according to Roof Slop using Wind Tunnel (풍동을 이용한 간척지 내 양지붕형 온실의 지붕 경사에 따른 풍압계수 평가)

  • Kim, Rack-Woo;Kim, Dong-Woo;Ryu, Ki-Cheol;Kwon, Kyeong-Seok;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.269-280
    • /
    • 2014
  • To cope with increasing of vegetables and flowers consumptions, horticulture facilities have been modernized. Korea government recently announced construction plan of new greenhouse complex at reclaimed land. However wind characteristics of reclaimed land is totally different from those of inland, wind pressure on greenhouse built in reclaimed land should be carefully evaluated to secure structural safety on the greenhouse. In this study, as a first step, wind pressure coefficient and local wind pressure coefficient on even-span greenhouse were measured using wind tunnel test. ESDU was adopted to realize wind characteristics of reclaimed land such as wind and turbulence profiles. From the wind tunnel test, when wind direction was 0 degree, it was concluded that KBC2009 standard underestimated scale of wind pressure coefficients at roof area of greenhouse whereas NEN-EN2002 standard underestimated those at every surface of greenhouse. When wind direction was 90 degree, both standards did not well reflect the characteristics of wind pressure distribution. From the analysis of local wind pressure coefficients according to wind direction conditions, design of covering, glazing bar of greenhouse where large effects of the local wind pressure were estimated should be well established. Wind pressure coefficients and local wind pressure coefficients according to parts of the greenhouse were finally suggested and these results could be practically used for suggesting new design standards of greenhouse.

Galloping of steepled main cables in long-span suspension bridges during construction

  • An, Yonghui;Wang, Chaoqun;Li, Shengli;Wang, Dongwei
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.595-613
    • /
    • 2016
  • Large amplitude oscillation of steepled main cables usually presents during construction of a long-span bridge. To study this phenomenon, six typical main cables with different cross sections during construction are investigated. Two main foci have been conducted. Firstly, aerodynamic coefficients of a main cable are obtained and compared through simulation and wind tunnel test: (1) to ensure the simulation accuracy, influences of the numerical model's grid size, and the jaggy edges of main cable's cross section on main cable's aerodynamic coefficients are investigated; (2) aerodynamic coefficients of main cables at different wind attack angles are obtained based on the wind tunnel test in which the experimental model is made by rigid plastic using the 3D Printing Technology; (3) then numerical results are compared with wind tunnel test results, and they are in good agreement. Secondly, aerodynamic coefficients of the six main cables at different wind attack angles are obtained through numerical simulation. Then Den Hartog criterion is used to analyze the transverse galloping of main cables during construction. Results show all the six main cables may undergo galloping, which may be an important reason for the large amplitude oscillation of steepled main cables during construction. The flow structures around the main cables indicate that the characteristic of the airflow trajectory over a steepled main cable may play an important role in the galloping generation. Engineers should take some effective measures to control this harmful phenomenon due to the big possibility of the onset of galloping during the construction period.

Time domain flutter analysis of the Great Belt East Bridge

  • Briseghella, Lamberto;Franchetti, Paolo;Secchi, Stefano
    • Wind and Structures
    • /
    • v.5 no.6
    • /
    • pp.479-492
    • /
    • 2002
  • A finite element aerodynamic model that can be used to analyse flutter instability of long span bridges in the time domain is presented. This approach adopts a simplified quasi-steady formulation of the wind forces neglecting the vortex shedding effects. The governing equations used are effective only for reduced velocities $V^*$ sufficiently great: this is generally acceptable for long-span suspension bridges and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglected. The procedure describes the mechanical response in an accurate way, taking into account the non-linear geometry effects (large displacements and large strains) and considering also the compressed locked coil strands instability. The time-dependence of the inertia force due to fluid structure interaction is not considered. The numerical examples are performed on the three-dimensional finite element model of the Great Belt East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results show good agreement with the experimental measurements of the full bridge aeroelastic model in the wind tunnel tests. Significant parameters affecting bridge response are introduced and accurately investigated.

Improvement of Concrete Lining Construction Method in Large Section Tunnel (대단면 터널 라이닝 콘크리트 타설 기법 개선에 관한 연구)

  • Kim, Sang-Whang;Ra, Kyong-woong;Koh, Sung-Yil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • Although the adverse critisism have been continued that the concrete lining need or not, most tunnel engineer agree that the concrete lining needs to increase the tunnel safety To establish the concrete lining's quality improvement method, we grasp the basic problems in lining construction process and propose the lining construction methods to increase the concrete quality This paper present a reason of initial crack occurrence in the large section tunnel (4 lane wide span tunnel), lining and an improved method for crack minimization in construction process. It is also verified verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF