• Title/Summary/Keyword: large-span roof

Search Result 46, Processing Time 0.025 seconds

Watertightness Property Evaluation of Rain-Block System (개폐식 대공간 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Kim, Yun-Ho;Baek, Ki-Youl;Kim, Jong-Su;Lee, Sun-Gyu;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.13-16
    • /
    • 2010
  • This study is an Investigation on the Watertightness Properties of Rain-Block System on the Sliding-Roof Joint of Large-Span Membrane Structures. In this experimental, we test the watertightness performance of joint part of sliding door in roof of large span membrane structure(for pilot project) under environment of rain and wind. A shape of rain water blocking systems of joint part in sliding door verifies the defects and effects of water leakage prevention in precipitation with the wind conditions. For obtaining watertightness of large span membrane structures, it is necessary quality of joints and performance, and quality of membrane material of a retractable roof as well as a closed roof. Also, for obtaining quality in joints, it is essential to make a watertightness guideline for design of large-span membrane.

  • PDF

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.

A Study on the Evaluation of Watertightness Properties for Rain-Block System in the Sliding-Roof Joint of Large-Span Membrane Structures (개폐식 대공간 막 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Oh, Sang-Keun;Baek, Ki-Youl;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • This study is an evaluation of the water-tightness properties of rain-block systems in the sliding-roof joint of large-span membrane structures. In this study, we suggested a method of evaluating the water-tightness performance of the joint part of a sliding door in the roof of a large-span membrane structure (for a pilot project), in an environment of rain and wind. The shape of the rainwater blocking systems of the joint part in a sliding door verifies the defects and the effects of water leakage prevention when there is precipitation with wind conditions. To secure the water-tightness of large span membrane structures, it is necessary to have a guideline on the evaluation of the design for rain-block system of the joint part, and the quality of the membrane material, both of a retractable roof and a closed roof.

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

Field measurements of wind pressure on an open roof during Typhoons HaiKui and SuLi

  • Feng, Ruoqiang;Liu, Fengcheng;Cai, Qi;Yan, Guirong;Leng, Jiabing
    • Wind and Structures
    • /
    • v.26 no.1
    • /
    • pp.11-24
    • /
    • 2018
  • Full-scale measurements of wind action on the open roof structure of the WuXi grand theater, which is composed of eight large-span free-form leaf-shaped space trusses with the largest span of 76.79 m, were conducted during the passage of Typhoons HaiKui and SuLi. The wind pressure field data were continuously and simultaneously monitored using a wind pressure monitoring system installed on the roof structure during the typhoons. A detailed analysis of the field data was performed to investigate the characteristics of the fluctuating wind pressure on the open roof, such as the wind pressure spectrum, spatial correlation coefficients, peak wind pressures and non-Gaussian wind pressure characteristics, under typhoon conditions. Three classical methods were used to calculate the peak factors of the wind pressure on the open roof, and the suggested design method and peak factors were given. The non-Gaussianity of the wind pressure was discussed in terms of the third and fourth statistical moments of the measured wind pressure, and the corresponding indication of the non-Gaussianity on the open roof was proposed. The result shows that there were large pulses in the time-histories of the measured wind pressure on Roof A2 in the field. The spatial correlation of the wind pressures on roof A2 between the upper surface and lower surface is very weak. When the skewness is larger than 0.3 and the kurtosis is larger than 3.7, the wind pressure time series on roof A2 can be taken as a non-Gaussian distribution, and the other series can be taken as a Gaussian distribution.

Wind pressures on a large span canopy roof

  • Rizzo, Fabio;Sepe, Vincenzo;Ricciardelli, Francesco;Avossa, Alberto Maria
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.299-316
    • /
    • 2020
  • Based on wind tunnel tests, this paper investigates the aerodynamic behavior of a large span canopy roof with elliptical plan and hyperbolic paraboloid shape. The statistics of pressure coefficients and the peak factor distributions are calculated for the top and bottom faces of the roof, and the Gaussian or non-Gaussian characteristics of the pressure time-histories in different areas of the roof are discussed. The cross-correlation of pressures at different positions on the roof, and between the top and bottom faces is also investigated. Combination factors are also evaluated to take into account the extreme values of net loads, relevant to the structural design of canopies.

Nonlinear Behaviors of Cable Spoke Wheel Roof Systems (케이블 스포크 휠 지붕 시스템의 비선형 거동)

  • Park, Kang-Geun;Lee, Mi-Hyang;Park, Mi-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics and nonlinear behaviors on the geometric nonlinear behavior of a cable spoke wheel roof system for long span lightweight roof structures. The weight of a cable spoke wheel roof dramatically can reduce and the cable roof system can easily make the required rigidity and shape by the sag ratio and pretension forces. Determining the pretension and initial sag of cable roof system is essential in a design process and the shape of roof is changed by pretension. The nonlinear behavior of flexible cable system has greatly an affect on the sag and pretension. This paper will be carried out analyzing and comparing the tensile forces and deflection of a cable spoke wheel system for the large span retractable roof, and analyzed to deflections and tensile forces by the post height of center hub. The double arrangement of a spoke wheel system with reverse curvature works more effectively as a load bearing system, the pretension can easily increase the structural stiffness. The cable truss system can carry vertical load in up and downward direction, and act effectively as load bearing elements.

Mechanical Characteristics of Retractable Radial Cable Roof Systems (개폐식 방사형 케이블 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo;Choe, Dong-Il
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2017
  • The objective of this study is to analysis the mechanical characteristics on the geometric nonlinear behavior of radial cable roof systems for long span retractable cable roof structures. The retractable roof is designed as a full control system to overcome extreme outdoor environments such as extreme hot or cold weather, strong wind or sunlight, and the cable roof greatly can reduce roof weight compared to other rigid structural system. A retractable cable roof system is a type of structures in which the part of entire roof can be opened and closed. The radial cable roof is an effective structural system for large span retractable roofs, the outer perimeter of the roof is a fixed membrane roof and the middle part is a roof that can be opened and closed. The double arrangement cables of a radial cable truss roof system with reverse curvature works more effectively as a load bearing cables, the cable system can carry vertical load in up and downward direction. In this paper, to analyze the mechanical characteristics of a radial cable roof system with central posts, the authors will investigate the tensile forces of bearing cables, stabilized cables, ring cables, and the deflection of roof according to the height of the post or hub that affects the sag ratio of cable truss. The tensile forces of the cables and the deflection of the roof are compared for the cases when the retractable roof is closed and opened.

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.