• Title/Summary/Keyword: large-scaled structures

Search Result 92, Processing Time 0.028 seconds

A Study on the Roles of Local Disaster Response Organizations (지역 재난현장 대응조직의 역할에 관한 연구)

  • Kwon, Gun-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • The purpose of this study is to compare and analyze the organizations for responses in disaster fields to cope with large-scaled disasters including Emergency Management Agency, Emergency Response Unit, Emergency Support Center, and Field Command Center (Field Command Office). According to the results of the analysis, the problems of the organizations for responses in local disaster fields are; 1) the scopes of roles among the organizations for responses in disaster fields are ambiguous, 2) the structures of the organizations for responses in disasters are different each other, 3) the integrated management functions among the organizations for responses in disasters are overlapped, and 4) the one who assumes the integrated command is not defined. In order to improve the problems, first, the range of working of each organization for responses in local disaster fields should be definitely established and an agreement in services among the organizations should be settled in advance. Second, similar designs in the structure among the organizations for responses in disasters are necessary for amicable communication. Third, the works for integration and management for each organization for responses should be apportioned. Fourth, the organization in charge and the one who assumes the integrated command for each type of disasters should be appointed in advance for rapid decision-making.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

A Study on an Adaptive Guidance Plan by Quickest Path Algorithm for Building Evacuations due to Fire (건물 화재시 Quickest Path를 이용한 Adaptive 피난경로 유도방안)

  • Sin, Seong-Il;Seo, Yong-Hui;Lee, Chang-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.197-208
    • /
    • 2007
  • Enormously sized buildings are appearing world-wide with the advancement of construction techniques. Large-scaled and complicated structures will have increased difficulties for dealing with safety, and will demand well-matched safety measures. This research introduced up-to-date techniques and systems which are applied in buildings in foreign nations. Furthermore, it proposed s direct guidance plan for buildings in case of fire. Since it is possible to install wireless sensor networks which detect fires or effects of fire, the plan makes use of this information. Accordingly, the authors completed a direct guidance plan that was based on omnidirectional guidance lights. It is possible to select a route with concern about both time and capacity with a concept of a non-dominated path. Finally, case studies showed that quickest path algorithms were effective for guiding efficient dispersion routes and in case of restriction of certain links in preferred paths due to temperature and smoke, it was possible to avoid relevant links and to restrict demand in the network application. Consequently, the algorithms were able to maximize safety and minimize evacuation time, which were the purposes of this study.

A Study on the Quality Assessment Using QFD & FMEA (QFD와 FMEA를 이용한 품질평가에 관한 연구)

  • Park, Chang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.78-87
    • /
    • 2017
  • Recently, the quality of a product or system has becoming increasingly important as it means customer satisfaction. The function, which is recognized as a nature of this quality, means how it functions well so it is the closest to the customer satisfaction. On the other hand, it is becoming more important as safety is closely related to destruction or human injury from accidents for engineers who handle large-scaled structures, such as ships. This study analyzed the function using quality function development (QFD) and considering the function and safety, which are being recognized as important in the structure. In addition, the safety and the quality analysis method based on the customers' needs was analyzed using failure mode and influence analysis (FMEA). In addition, the supplementary materials that are important in terms of the aspect of safety and function for the quality enhancement of a hatchway system were determined by applying a bulk carrier and hatchway. As a result, there are commonly understood items in important supplementary materials and parts, which are determined individually in terms of function and safety, because they can enhance both the function and safety simultaneously. This study shows that designers can improve the quality of products and systems by enhancing these supplementary materials and parts with greater interest.

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

The Relationship between Unsafe Acts and Fall Accident of Workers Using ETA (ETA를 활용한 근로자의 불안전한 행동과 떨어짐 사고의 관계)

  • Jeong, Eunbeen;Choi, Jaewook;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.3
    • /
    • pp.28-38
    • /
    • 2020
  • The large-scaled and high-rise construction structures in recent years have increased high place work, leading to an increase in falling accidents (hereinafter, "accidents"). The need for prediction and management of unsafe acts of workers at construction sites has been raised as unsafe acts of workers are identified as the main cause of industrial accidents. This research aims at deriving the improvement effect of unsafe acts by presenting the relationship between unsafe acts of workers and accidents at construction sites as a probability. Unsafe acts of workers were derived based on the analysis of accident cases. In addition, surveys were conducted to calculate the probability of occurrence of accidents caused by unsafe acts (hereinafter, 'accident probability'). The Event Tree Analysis (ETA) was utilized to confirm the final probability according to the combination of unsafe acts and improvement effect. The accident probability by unsafe act was found to be the highest for working after drinking (95.41%) and to be the lowest for equipment and machine utilization (65.70%). The accident probability according to a combination of unsafe acts was the highest when all of the unsafe acts were conducted (13.23%) and was the lowest when none of the unsafe acts were conducted (0.00%).

Dielectric Waveguide Filters Design Embedded in PCB Substrates using Via Fence at Millimeter-Wave (밀리미터파 대역에서 Via Fence를 이용한 PCB 기판용 유전체 도파관 필터 설계)

  • 김봉수;이재욱;김광선;강민수;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, the implementation and embedding method of the existing air-filled waveguide-filters at millimeter-wave on general PCB substrate is introduced by systematically inserting the vias inside waveguide and mathematically manipulating the simple equations obtained ken the classical circular-post waveguide filter design. All the metal structures placed vertically such as side wall fur perfect ground plane and circular-post for signal control in the air-filled WR-22 waveguide are replaced with several types of via for constructing the bandpass-filter. Side wall and poles inside waveguide are realized by placing a series array of via and tuning the via diameter. The lengths of x, y, z axis are reduced in proportion to root square of employed substrate dielectric constant and especially the length of z axis can be more reduced due to the characteristics of the wave propagation. Because the mass production on PCB is possible without fabricating a large-scaled metal waveguide of WR-22 as input/output ports at millimeter-wave regime, the manufacturing cost is reduced considerably. Finally, when using multilayer process like LTCC for small-sized module, it is one of advantages to use only one layer f3r the filter fabrication. To evaluate the validity of this novel technique, order-3 Chebyshev BPF(Bandpass-Filter) centered at 40 GHz-band with a 2.5 % FBW (Fractional Bandwidth) were used. The employed substrate has relative dielectric constant of 2.2 and thickness of 10 mil of Rogers RT/Duroid 5880. Accroding to design and measurement results, a good performance of insertion loss of 2 ㏈ and return loss of -30 ㏈ is achieved at full input/output ports.

An Investigation of Higher Order Forces on a Vertical Truncated Cylinder

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.214-214
    • /
    • 2003
  • During a model test of Hutton TLP, a "ringing" response was first observed about 20 years ago. This phenomenon is a resonant build up over the time of wave period and this burst-like motion can cause the extreme load on the TLP tether. It is often detected in the large and steep irregular waves but the generation mechanism leading to the "ringing" is not yet well understood. According to the research since then, the higher order harmonic components may account for the "ringing" on the floating offshore structures. The main purpose of the present research is, thus, to measure the higher harmonic forces exerted on a vertical truncated circular column and to compare them with available data. A vertical truncated cylinder with a diameter of 3.5inch and a draft of 10.5inch is used as a test structure, which is a scaled model of ISSC TLP column. The cylinder is installed at a distance of 45ft from the wave maker in order to avoid parasitic waves created in the wave flap. Attached to the upper part of the cylinder are two force gages to measure the horizontal (surge) and vertical (heave) forces on the cylinder. The incoming waves are Stokes waves with a slope ranging from 0.06 to 0.24. The forces and waves are measured for 60 seconds with a sampling rate of 50 Hz. Among the recorded data, the first 10 waves are excluded because of transient behavior of the waves and the next The horizontal and vertical forces are analyzed up to 5th order harmonics. The horizontal forces are then compared to the values from the theoretical model called "FNV model". In addition, force transfer functions are also investigated. Major findings in this research are below. 1) The first order forces measured are slightly larger than the theoretical values of "FNV model" 2) The "FNV model" considerably overpredicts the second order forces. 3) The larger the amplitude and more extreme the wave slope, the smaller the predictions are compared to the experimental. 4) The higher harmonic forces are significantly smaller than the first harmonic force for all wave parameters. 5) The normalized forces vs. waves slopes are almost constant in the lower harmonics but vary a lot in the higher harmonics. 6) The trend of forces is more nonlinear in the horizontal forces than in the vertical forces as the wave slope increases. 7) The part of the results above is also observed by other researchers and confirmed again through the present work.

  • PDF

Development of Risk Analysis Structure for Large-scale Underground Construction in Urban Areas (도심지 대규모 지하공사의 리스크 분석 체계 개발)

  • Seo, Jong-Won;Yoon, Ji-Hyeok;Kim, Jeong-Hwan;Jee, Sung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • Systematic risk management is necessary in grand scaled urban construction because of the existence of complicated and various risk factors. Problems of obstructions, adjacent structures, safety, environment, traffic and geotechnical properties need to be solved because urban construction is progressed in limited space not as general earthwork. Therefore the establishment of special risk management system is necessary to manage not only geotechnical properties but also social and cultural uncertainties. This research presents the technique analysis by the current state of risk management technique. Risk factors were noticed and the importance of each factor was estimated through survey. The systemically categorized database was established. Risk extraction module, matrix and score module were developed based on the database. Expected construction budget and time distribution can be computed by Monte Carlo analysis of probabilities and influences. Construction budgets and time distributions of before and after response can be compared and analyzed 80 the risks are manageable for entire whole construction time. This system will be the foundation of standardization and integration. Procurement, efficiency improvement, effective time and resource management are available through integrated management technique development and application. Conclusively decrease in cost and time is expected by systemization of project management.