• Title/Summary/Keyword: large-cell coverage

Search Result 33, Processing Time 0.027 seconds

Design of Uplink Initial Ranging Algorithm for Large-Cell Coverage Fixed Wireless Communication System (광범위 고정형 무선 통신 시스템을 위한 상향 링크 초기 레인징 기법 설계)

  • Lee, Kyung-Hoon;Hwang, Won-Jun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.569-580
    • /
    • 2012
  • In this paper, an enhanced initial ranging algorithm for large-cell coverage fixed wireless communication system is proposed. In typical wireless communication system such as WiBro, because a round-trip delay between a transmitter and a receiver is within one OFDM (Orthogonal Frequency Division Multiplexing) symbol duration, a frequency-domain differential correlation method is generally used. However, the conventional method cannot be applied due to an increase of a maximum time delay in large-cell system. In case of an accumulative differential method, estimation errors can occur because of frequent sign transitions. In this paper, therefore, we propose an algorithm which can estimate a total timing offset in a ranging channel structure for 15 km cell. The proposed method can improve performance by sign comparison based sign error correction rule between the estimated values and using a weighting scheme based on channel correlation, the number of accumulations, and the noise reduction effect in normalization process. Also, it can estimate the integer timing offset of symbol duration by comparing peak-powers after compensating for the fractional timing offset of symbol duration.

Clinical Application of Adipose Derived Stromal Cell Autograft for Wound Coverage (배양하지 않은 지방조직세포를 이용한 창상피복)

  • Seo, Dong-lin;Han, Seung-Kyu;Chun, Kyung-Wook;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • Purpose: Skin and soft tissue defect is one of the major challenges faced by plastic surgeons. Adipose derived stromal cells, which can be harvested in large quantities with low morbidity, display multilineage mesodermal potential. Therefore, adipose derived stromal cells have been met with a great deal of excitement by the field of tissue engineering. Recently, Adipose derived stromal cells have been isolated and cultured to use soft tissue restoration. In order to apply cultured cells for clinical purpose, however, FDA approved facilities and techniques are required, which may be difficult for a clinician who cultures cells in a laboratory dedicated to research to utilize this treatment for patients. In addition, long culture period is needed. Fortunately, adipose derived stromal cells are easy to obtain in large quantities without cell culture. The purpose of this study is to present a possibility of using uncultured adipose derived stromal cells for wound coverage. Methods: Seven patients who needed skin and soft tissue restoration were included. Five patients had diabetic foot ulcers, 1 patient got thumb amputation, and 1 patient had tissue defect caused by resection of squamous cell carcinoma. The patients' abdominal adipose tissues were obtained by liposuction. The samples were digested with type I collagenase and centrifuged to obtain adipose derived stromal cells. The isolated adipose derived stromal cells were applied over the wounds immediately after the wound debridement. Fibrin was used as adipose derived stromal cells carrier. Occlusive dressing was applied with films and foams and the wounds were kept moist until complete healing. Results: One hundred to one hundred sixty thousand adipose derived stromal cells were isolated per ml aspirated adipose tissue. All patients' wounds were successfully covered with the grafted adipose derived stromal cells in a 17 to 27 day period. No adverse events related to this treatment occurred. Conclusion: The use of uncultured adipose derived stromal cells was found to be safe and effective treatment for wound coverage without donor site morbidity.

Performance Analysis of Mobile Internet System in Inter-cell Interference Environment (인접 셀 간섭 환경에서 모바일 인터넷 시스템의 성능 분석)

  • Roh, Jae-Sung;Kim, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.96-102
    • /
    • 2012
  • The goal of mobile internet system is to provide a high-data-rate, low-latency and optimized packet radio access technology supporting flexible bandwidth deployments. Therefore, network architecture is designed with the goal to support packet-switched traffic with seamless mobility, quality of service and minimal latency. An important requirement for the mobile internet system is improved cell-edge BER performance and data throughput. This is to provide some level of service consistency in terms of geographical coverage as well as in terms of available data throughput within the communication coverage area. In a cellular system, however, the signal to interference plus noise power ratio gap between cell-center and cell-edge users can be of the order of 20 [dB]. The disparity can be even higher in a communication coverage limited cellular system. This leads to vastly lower data throughputs for the cell-edge users relative to cell-center users creating a large QoS gap. This paper proposes a analytical approach that tries to reduce inter-cell interference, and shows the SIR and BER performance according to the OFDM system parameters in mobile Internet environment.

3GPP Standardization Activity for Small Cell Enhancement (3GPP 소형셀 향상 표준화 기술 동향)

  • Baek, SeungKwon;Chang, SungCheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.628-631
    • /
    • 2014
  • Recently, the proliferation of new applications, e.g., mobile TV, Internet gaming, large file transfer, and the various of user terminals, e.g., smart phones and notebooks, has dramatically increased user traffic and network load. In order to meet this traffic growth, vendors and cellular operators are working on the development of new technologies and cellular standards. Within them, small cell deployment has been heralded as one of most promising way to increase both coverage and capacity of future cellular network. Small cell technology enables to improve capacity of cellular radio network by tight cooperation between small cell and macro cell in multi-tier network where small cells are densely deployed within macro cell coverage. In this paper, we describe the deployment scenarios for cooperation between macro cell and small cells and state-of-the-art technologies related to dense small cell deployment. Then, we also provide design principles and standardization trends for small cell enhancement in 3GPP.

  • PDF

5G Wireless Communication Technology for Non-Terrestrial Network (비지상네트워크를 위한 5G 무선통신 기술)

  • Kim, J.H.;Yoon, M.Y.;You, D.H.;Lee, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.6
    • /
    • pp.51-60
    • /
    • 2019
  • As a way to further expand and enable the 5G ecosystem, the $3^{rd}$ Generation Partnership Project (3GPP) is considering the development of a 5G new radio (NR)-based non-terrestrial network (NTN). These NTNs are expected to provide ubiquitous 5G services to user's equipment (especially, in Internet of Things/machine-type communications (IoT/MTC) public safety, and critical communications) by extending service coverage to areas not covered by 5G terrestrial networks. To this end, this NTN is developing scenarios to provide 5G services using spaceborne vehicles, such as geosynchronous and low-Earth orbit satellites, and airborne vehicles, such as unmanned aircraft systems, including high-altitude pseudo-satellites. In addition, various technologies are being studied to satisfy new requirements not considered in 5G NR, such as long propagation delay time, large cell coverage, large Doppler effect, and base station movement. In this paper, we present the scenarios, requirements, technical issues and solutions, and standardization planning for NR-based NTN in 3GPP.

About the Location of Base Stations for a UMTS System: Analytical Study and Simulations

  • Zola Enrica;Barcelo Francisco
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2006
  • One of the first decisions that a radio network designer must take is the location of base stations and the distance between them in order to give the best coverage to a region and, possibly, to reduce deployment costs. In this paper, the authors give an insight to this matter by presenting a possible solution to a real problem: Planning the base stations layout for a universal mobile telecommunications system (UMTS) in the city of Barcelona. At the basis of this problem, there is the interdependence between coverage and capacity in a wideband-code division multiple access (W-CDMA) system, which is a new element in the planning of BS layout for mobile communications. This aspect has been first treated with an analytical study of the cell coverage range for a specific environment and service. The achieved results have been checked with the help of snapshot simulations together with a geographical information system (GIS) tool incorporated in the simulator that allows to perform analysis and to visualize results in a useful way. By using the simulator, it is also possible to study a more complex environment, that of a set of base stations providing multiple services to a large number of users.

A New Test Algorithm for High-Density Memories (고집적 메모리를 위한 새로운 테스트 알고리즘)

  • Kang, Dong-Chual;Cho, Sang-Bock
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.59-62
    • /
    • 2000
  • As the density of memories increases, unwanted interference between cells and coupling noise between bit-lines are increased and testing high density memories for a high degree of fault coverage can require either a relatively large number of test vectors or a significant amount of additional test circuitry. From now on, conventional test algorithms have focused on faults between neighborhood cells, not neighborhood bit-lines. In this paper, a new algorithm for NPSFs, and neighborhood bit-line sensitive faults (NBLSFs) based on the NPSFs are proposed. Instead of the conventional five-cell and nine-cell physical neighborhood layouts to test memory cells, a three-cell layout which is minimum size for NBLSFs detection is used. To consider faults by maximum coupling noise by neighborhood bit-lines, we added refresh operation after write operation in the test procedure(i.e., write \longrightarrow refresh \longrightarrow read). Also, we present properties of the algorithm, such as its capability to detect stuck-at faults, transition faults, conventional pattern sensitive faults, and neighborhood bit-line sensitive faults.

  • PDF

Scalp reconstruction using the reverse temporalis muscle flap: a case report

  • Na, Youngsu;Shin, Donghyeok;Choi, Hyungon;Kim, Jeenam;Lee, Myungchul
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.3
    • /
    • pp.134-138
    • /
    • 2022
  • The scalp is the thickest skin in the body and protects the intracranial structures. The coverage of a large scalp defect is a difficult surgical procedure, the full details of which must be considered prior to the procedure, such as defect size and depth, and various factors related to the patient's general condition. Although a free flap is the recommended surgical procedure to cover large scalp defects, it is a high-risk operation that is not appropriate for all patients. As such, other surgical options must be explored. We present the case of a patient with an ulcer on the scalp after wide excision and split-thickness skin graft for squamous cell cancer. We successfully performed a reverse temporalis muscle flap for this patient.

An Efficient Built-in Self-Test Algorithm for Neighborhood Pattern- and Bit-Line-Sensitive Faults in High-Density Memories

  • Kang, Dong-Chual;Park, Sung-Min;Cho, Sang-Bock
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.520-534
    • /
    • 2004
  • As the density of memories increases, unwanted interference between cells and the coupling noise between bit-lines become significant, requiring parallel testing. Testing high-density memories for a high degree of fault coverage requires either a relatively large number of test vectors or a significant amount of additional test circuitry. This paper proposes a new tiling method and an efficient built-in self-test (BIST) algorithm for neighborhood pattern-sensitive faults (NPSFs) and new neighborhood bit-line sensitive faults (NBLSFs). Instead of the conventional five-cell and nine-cell physical neighborhood layouts to test memory cells, a four-cell layout is utilized. This four-cell layout needs smaller test vectors, provides easier hardware implementation, and is more appropriate for both NPSFs and NBLSFs detection. A CMOS column decoder and the parallel comparator proposed by P. Mazumder are modified to implement the test procedure. Consequently, these reduce the number of transistors used for a BIST circuit. Also, we present algorithm properties such as the capability to detect stuck-at faults, transition faults, conventional pattern-sensitive faults, and neighborhood bit-line sensitive faults.

  • PDF

Dynamic Reservation Scheme of Physical Cell Identity for 3GPP LTE Femtocell Systems

  • Lee, Poong-Up;Jeong, Jang-Keun;Saxena, Navrati;Shin, Ji-Tae
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.207-220
    • /
    • 2009
  • A large number of phone calls and data services will take place in indoor environments. In Long Term Evolution (LTE), femtocell, as a home base station for indoor coverage extension and wideband data service, has recently gained significant interests from operators and consumers. Since femtocell is frequently turned on and off by a personal owner, not by a network operator, one of the key issues is that femtocell should be identified autonomously without system information to support handover from macrocell to femtocell. In this paper, we propose a dynamic reservation scheme of Physical Cell Identities (PCI) for 3GPP LTE femtocell systems. There are several reserving types, and each type reserves a different number of PCIs for femtocell. The transition among the types depends on the deployed number of femtocells, or the number of PCI confusion events. Accordingly, flexible use of PCIs can decrease PCI confusion. This reduces searching time for femtocell, and it is helpful for the quick handover from macrocell to femtocell. Simulation results show that our proposed scheme reduces average delay for identifying detected cells, and increases network capacity within equal delay constraints.