• 제목/요약/키워드: large-Scale structures

검색결과 957건 처리시간 0.027초

프리캐스트 콘크리트 트러스 시스템의 압축 내하력 실험 연구 (An Experimental Study on Compressive Loading Capacity of Precast Concrete Truss System)

  • 한만엽;전세진
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.889-900
    • /
    • 2013
  • 대형 구조물의 기초나 지중 구조물 시공을 위한 대규모 굴착 시 매우 큰 토압이 발생할 수 있다. 이러한 큰 토압을 지지하기 위해 기존에 사용되어 온 강재 버팀보를 적용할 경우 경제성 및 효율성이 저하될 우려가 있다. 이러한 점을 개선하기 위해 PCT(Precast Concrete Truss) 시스템을 고안하였으며 이에 대한 실험 및 해석적 연구를 수행하였다. 콘크리트 트러스 부재의 조립 및 해체를 용이하게 하기 위해 적절한 연결방법이 제안되었다. 이러한 연결부를 포함한 PCT 시스템의 내하력을 검증하기 위해 실대형 실험이 실시되었으며, 실험결과는 구조해석결과와도 비교되었다. PCT 버팀보를 모사한 시험체는 극한하중 도달 시까지 좌굴이 발생하지 않았으나, 연결 부재 상세에 대한 일부 개선점이 도출되었다. PCT 시스템은 대규모 굴착 시 기존의 강재 버팀보를 대체하는 가설구조물로서 효율적으로 활용될 수 있을 것으로 기대된다.

COSMIC SHOCK WAVES ON LARGE SCALES OF THE UNIVERSE

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.25-26
    • /
    • 1996
  • In the standard theory of the large scale structure formation, matter accretes onto high density perturbations via gravitational instability. Collision less dark matter forms caustics around such structures, while collisional baryonic matter forms accretion shocks which then halt and heat the infalling gas. Here we discuss the characteristics. roles, and observational consequences of these accretion shocks.

  • PDF

GIS 및 지구통계학을 이용한 실시간 통합계측관리 프로그램 개발 (Development of Real Time Monitoring Program Using Geostatistics and GIS)

  • 한병원;박재성;이대형;이계춘;김성욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1046-1053
    • /
    • 2006
  • In the large scale recent reclaiming works performed within the wide spatial boundary, evaluation of long-term consolidation settlement and residual settlement of the whole construction area is sometimes made with the results of the limited ground investigation and measurement. Then the reliability of evaluation has limitations due to the spatial uncertainty. Additionally, in case of large scale deep excavation works such as urban subway construction, there are a lot of hazardous elements to threaten the safety of underground pipes or adjacent structures. Therefore it is necessary to introduce a damage prediction system of adjacent structures and others. For the more accurate analysis of monitoring information in the wide spatial boundary works and large scale urban deep excavations, it is necessary to perform statistical and spatial analysis considering the geographical spatial effect of ground and monitoring information in stead of using diagrammatization method based on a time-series data expression that is traditionally used. And also it is necessary that enormous ground information and measurement data, digital maps are accumulated in a database, and they are controlled in a integrating system. On the abovementioned point of view, we developed Geomonitor 2.0, an Internet based real time monitoring program with a new concept by adding GIS and geo-statistical analysis method to the existing real time integrated measurement system that is already developed and under useful use. The new program enables the spatial analysis and database of monitoring data and ground information, and helps the construction- related persons make a quick and accurate decision for the economical and safe construction.

  • PDF

When do cosmic peaks, filaments, or walls merge? A theory of critical events in a multiscale landscape

  • C Cadiou;C Pichon;S Codis;M Musso;D Pogosyan;Y Dubois;J-F Cardoso;S Prunet
    • Monthly Notices of the Royal Astronomical Society
    • /
    • 제496권4호
    • /
    • pp.4787-4821
    • /
    • 2020
  • The merging rate of cosmic structures is computed, relying on the ansatz that they can be predicted in the initial linear density field from the coalescence of critical points with increasing smoothing scale, used here as a proxy for cosmic time. Beyond the mergers of peaks with saddle points (a proxy for halo mergers), we consider the coalescence and nucleation of all sets of critical points, including wall-saddle to filament-saddle and wall-saddle to minima (a proxy for filament and void mergers, respectively), as they impact the geometry of galactic infall, and in particular filament disconnection. Analytical predictions of the one-point statistics are validated against multiscale measurements in 2D and 3D realizations of Gaussian random fields (the corresponding code being available upon request) and compared qualitatively to cosmological N-body simulations at early times (z ≥ 10) and large scales (≥5 Mpc h-1). The rate of filament coalescence is compared to the merger rate of haloes and the two-point clustering of these events is computed, along with their cross-correlations with critical points. These correlations are qualitatively consistent with the preservation of the connectivity of dark matter haloes, and the impact of the large-scale structures on assembly bias. The destruction rate of haloes and voids as a function of mass and redshift is quantified down to z = 0 for a Lambda cold dark matter cosmology. The one-point statistics in higher dimensions are also presented, together with consistency relations between critical point and critical event counts.

유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정 (Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve)

  • 김동영;윤춘경;이한필;최재호;황하선
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

Liquid entrainment through a large-scale inclined branch pipe on a horizontal main pipe

  • Gu, Ningxin;Shen, Geyu;Lu, Zhiyuan;Yang, Yuenan;Meng, Zhaoming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1164-1171
    • /
    • 2020
  • T-junction structures play an important role in nuclear power plant systems. Research on liquid entrainment is mostly based on small-scale branch pipes (d/D ≤ 0.2) and attention paid to large-scale branch pipes (0.33 < d/D < 1) is insufficient. Accordingly, this study implements a series of experiments on the liquid entrainment of T-junction with different angles (32.2°,47.9°,62.3°,90°) through a large-scale branch (d/D = 0.675). The onset liquid entrainment is related to the gas phase Froude number Frg, the dimensionless gas chamber height hb/d and the branch pipe angle 𝜃. As Frg increases, hb/d also rises. With a constant hb/d, the onset liquid entrainment changes from droplets entrainment by the gas phase to that by the rising liquid film. The steady-state liquid entrainment is related to w3g, h/d and 𝜃. With constant w3g and h/d, the branch quality grows as the branch angle increases. With a certain h/d, the branch quality increases, as the w3g number increases.

수치해석기법을 이용한 지오텍스타일 튜브의 거동분석 (Behavior of Geotextile Tube by Numerical Analysis)

  • 신은철;오영인;조인휘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2003
  • Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.

  • PDF

슈퍼요소기법을 이용한 대규모 유한요소법의 크레이선 구조해석 적용 연구 (A Study on Large Scale FEM for Structural Analysis of a Crane Vessel Using Superelement Technique)

  • 조규남;장영식;이지현
    • 전산구조공학
    • /
    • 제7권3호
    • /
    • pp.143-152
    • /
    • 1994
  • 슈퍼요소를 이용한 구조해석은 항공기나 선박등 대형구조물의 해석에서 장점을 가지며 하드웨어의 제한된 조건속에서 효과적인 결과를 준다. 본 논문에서는 고정된 타이벡(ite back) 상태에서 세게 최대의 5000톤, 회전 상태에서 3000톤을 들어 올릴수 있는 크레인선의 구조 안전성 검토를 위하여 슈퍼요소로 분할된 부분 구조물 해석을 다루었으며, 효과적인 부분구조화(substructuring)과정과 독특한 하중추출방법 및 유한요소 모델링 기법을 제시하고 있다. 또한 해석결과에 근거한 실질적인 구조물의 총괄적 국부보강방법을 보여주고 있다. 대형 크레인선의 구조해석적용 연구를 통하여 부분구조기법의 효율성을 확립하였으며 이러한 해석기법을 통하여 새로운 형태의 유사한 구조물에 대한 해석지침을 제시하고 있다.

  • PDF

Machine learning-based evaluation technology of 3D spatial distribution of residual radioactivity in large-scale radioactive structures

  • UkJae Lee;Phillip Chang;Nam-Suk Jung;Jonghun Jang;Jimin Lee;Hee-Seock Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3199-3209
    • /
    • 2024
  • During the decommissioning of nuclear and particle accelerator facilities, a considerable amount of large-scale radioactive waste may be generated. Accurately defining the activation level of the waste is crucial for proper disposal. However, directly measuring the internal radioactivity distribution poses challenges. This study introduced a novel technology employing machine learning to assess the internal radioactivity distribution based on external measurements. Random radioactivity distribution within a structure were established, and the photon spectrum measured by detectors from outside the structure was simulated using the FLUKA Monte-Carlo code. Through training with spectrum data corresponding to various radioactivity distributions, an evaluation model for radioactivity using simulated data was developed by above Monte-Carlo simulation. Convolutional Neural Network and Transformer methods were utilized to establish the evaluation model. The machine learning construction involves 5425 simulation datasets, and 603 datasets, which were used to obtain the evaluated results. Preprocessing was applied to the datasets, but the evaluation model using raw spectrum data showed the best evaluation results. The estimation of the intensity and shape of the radioactivity distribution inside the structure was achieved with a relative error of 10%. Additionally, the evaluation based on the constructed model takes only a few seconds to complete the process.