• 제목/요약/키워드: large-Scale structures

Search Result 943, Processing Time 0.037 seconds

LARGE SCALE MAGNETOGENESIS THROUGH RADIATION PRESSURE

  • LANGER MATHIEU;PUGET JEAN-LOUP;AGHANIM NABILA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.553-556
    • /
    • 2004
  • We present a new model for the generation of magnetic fields on large scales occurring at the end of cosmological reionisation. The inhomogeneous radiation provided by luminous sources and the fluctuations in the matter density field are the major ingredients of the model. More specifically, differential radiation pressure acting on ions and electrons gives rise to electric currents which induce magnetic fields on large scales. We show that on protogalactic scales, this process is highly efficient, leading to magnetic field amplitudes of the order of $10^{-1l}$ Gauss. While remaining of negligible dynamical impact, those amplitudes are million times higher than those obtained in usual astrophysical magnetogenesis models. Finally, we derive the relation between the power spectrum of the generated field and the one of the matter density fluctuations. We show in particular that magnetic fields are preferably created on large (galactic or cluster) scales. Small scale magnetic fields are strongly disfavoured, which further makes the process we propose an ideal candidate to explain the origin of magnetic fields in large scale structures.

Electromagnetic Modeling of High Altitude Electromagnetic Pulse Coupling into Large-Scale Underground Multilayer Structures (다층 지하 구조물로의 고고도 전자기파(HEMP) 커플링 현상에 대한 전자기적 모델링)

  • Kang, Hee-Do;Oh, Il-Young;Kim, Jung-Ho;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.392-401
    • /
    • 2012
  • This paper gives a electromagnetic coupling mechanism of the high altitude electromagnetic pulse (HEMP) into large- scale underground multilayer structures using analytic and numerical methods. The modeling methods are firstly addressed to the HEMP source which can be generated by intentional nuclear explosion. The instantaneous and intense electromagnetic pulse of the HEMP source is concerned from DC to 100 MHz band, because the power spectrum of the HEMP is rapidly decreased under -30 dB over the 100 MHz band. Through this range, a penetrated electric field distribution is computed within the large-scale underground multilayer structures. As a result, the penetrated electric field intensities at 0.1 and 1 MHz are about 10 and 5 kV/m, respectively. Therefore, additional shielding techniques are introduced to protect buried structures within the large-scale underground structures such as high-lossy material and filtering structures (wire screen).

A Study on The Evaluation of Fracture Strength for Large Sized Structures Based upon Their Fracturing Characteristics (대형구조물의 파괴강도 특성 평가기술에 관한 연구)

  • Moon-Sik Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.102-111
    • /
    • 1993
  • One of the most important design procedures for large sized structures is the evaluation of fracture strength against fatigue and brittle fractures threatening to occur in their steel members. In this paper, the safety assessment based upon the knowledge about the fracturing characteristics of such ship structures was discussed, which can be estimated from such phenomena as fatigue crack propagation and brittle fractures, as obtained by employing fracture mechanics at the basic design stage. Model tests with a partial structure specimen of full size was carried out to authenticate a question as to whether or not the fracturing characteristics of such sophisticated structures could be estimated with precision from ordinary scale specimen tests, It was shown that the behviour of fatigue crack growth of large sized structures in this study could be predicted from the results of ordinary scale specimen test.

  • PDF

Crash Analysis of Railway Vehicle Structure Using Scale Model (축소모형을 이용한 철도차량 충돌 해석 기법 연구)

  • 김범진;허승진
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.54-59
    • /
    • 2002
  • In general, the aluminum extrusions are used to the light construction of the high speed rail vehicle structures. However, the research works ok the crashworthy design of the high speed rail vehicle structures are not published sufficiently because the crash test of high speed rail vehicle structures costs high and is complicated. So, a method that can predict crash characteristics of a large size structure like a high speed tail vehicle should be suggested. In this study, the scale model studies are performed to predict the impact energy absorption characteristics of full scale model. In the first place, we verified the theory of scale law using FE-simulation from the crashworthiness point of view. Secondly, we performed the crush test using scale model, made of aluminum sub structure. As a result, we could predict the crash characteristics using scale model by 10∼20% error.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

Manufacturing Micrometer Scale Structures by an Optical Tweezers System Controlled by CyberGlove (가상장갑으로 제어되는 광핀셋 시스템을 이용한 마이크로 구조물의 제작)

  • Park, I.Y.;Lee, J.H.;Lee, Y.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.298-307
    • /
    • 2007
  • In recent years, researchers are actively investigating new methods that are applicable for manufacturing micrometer to nanometer scale structures. Among them, optical tweezers that can manipulate microscopic objects using a laser is receiving one of the key attentions. Optical tweezers have been used actively in the field of science. For example, for measuring mechanical characteristics in the scale of piconewtons or for manipulating and sorting large numbers of particles, bacteria, cells. etc. However, little works have been reported for "manufacturing" objects. In this paper, we present a new method for manufacturing micrometer scale structures using micrometer scale biotin coated polystyrene particles. Particles will be controlled with a user interface that utilizes a CyberGlove and glued together by the bonding force between biotin and streptavidin.

Phas-space Analysis of Halos around Large-scale Filamentary Structures

  • Jhee, Hannah;Song, Hyunmi;Smith, Rory;Shin, Jihye;Park, Inkyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.3-65
    • /
    • 2020
  • It has been studied that galaxies evolve following a typical trajectory on the phase space under the influence of deep gravitational potential of galaxy clusters. Similarly, the large-scale filaments could also affect the evolution of galaxies before falling into the clusters. In this study, using a dark matter-only cosmological simulation, N-Cluster Run, we explore the evolution of galaxies on the phase space drien by large-scale filaments. We find that galaxies around the filaments form a common trajectory on the phase space as well as cluster galaxies do. We also examine how these trajectories change depending on various physical parameters such as galaxy mass, initial distance of galaxies from large-scale filaments, and cluster mass.

  • PDF

Development of a PVDF sensor for detecting over-load and impact on large-scale mechanical structures (대형 기계 구조물의 과부하 및 충격 측정을 위한 PVDF 센서 개발)

  • Kang, Dong-Bae;Ahn, Jung-Hwan;Kim, Gang-Yeon;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6399-6405
    • /
    • 2014
  • An external overload or impact is an important factor affecting the safety of large-scale structures. The proposal of this paper is the development of a system for detecting overload and impulse using a single PVDF film sensor. In large-scale structures, the load causes the structure to be deformed and the impulse generates vibration on the structure. Generally, low frequency deformation or bending of a structure is measured with a strain gauge and the high frequency vibration is detected by an accelerometer. On the other hand, a single sensor that can detect both deformation and vibration has not been developed. In this study, the development of a detection system integrated with a polyvinylidene fluoride (PVDF) film sensor, amplifier, and software was attempted to monitor deformation and impact through a single sensor. The system was verified by the possibility of detecting overload and impulse, and the two filtered signals of the PVDF were compared with a conventional strain gauge and an accelerometer.

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF