• Title/Summary/Keyword: large wind pressure

Search Result 203, Processing Time 0.024 seconds

Effect of parapets to pressure distribution on flat top of a finite cylinder

  • Ozmen, Y.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.465-477
    • /
    • 2013
  • In this paper, the effects of parapets on the mean and fluctuating wind pressures which are acting on a flat top of a finite cylinder vertically placed on a flat plate have experimentally been investigated. The aspect ratio (AR) of cylinder is 1 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 150000. The pressure distributions on the flat top and the side wall of the finite cylinder immersed in a simulated atmospheric boundary layer have been obtained for different parapet heights. The large magnitudes of mean and minimum suction pressures occurring near the leading edge were measured for the cases with and without parapet. They shift to the further downstream on the circular top with increasing parapet height. It is seen that the parapets reduce the local high suction on the top up to 24%.

Study on Low Frequency Swishing Sound Field by a Singularity in Circular Motion with Large Radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.569-574
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, acoustic source model using a singularity in circular motion is introduced to derive analytic solution of Lowson acoustic analogy in time domain. Results in time and frequency domains computed by the solution show apparent modulation of amplitude and frequency. The solution indicates that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding time-averaged spectra of sound pressure at the receiver locations where the retarded time distributions are almost same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing. Finally, as an introduction of procedure to quantify low frequency swishing noise level, relative variation of overall sound pressure level is obtained using tonal low frequency noise model.

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Pressure drop characteristics of concentric spiral corrugation cryostats for a HTS power cable considering core surface roughness

  • Youngjun Choi;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, interest in renewable energy such as solar and wind power has increased as an alternative to fossil fuels. Renewable energy sources such as large wind farms require long-distance power transmission because they are located inland or offshore, far from the city where power is required. High-Temperature Superconducting (HTS) power cables have more than 5 times the transmission capacity and less than one-tenth the transmission loss compared to the existing cables of the same size, enabling large-capacity transmission at low voltage. For commercialization of HTS power cables, unmanned operation and long-distance cooling technology of several kilometers is essential, and pressure drop characteristic is important. The cryostat's spiral corrugation tube is easier to bend, but unlike the round tube, the pressure drop cannot be calculated using the Moody chart. In addition, it is more difficult to predict the pressure drop characteristics due to the irregular surface roughness of the binder wound around the cable core. In this paper, a CFD model of a spiral corrugation tube with a core was designed by referring to the water experiments from previous studies. In the four cases geometry, when the surface roughness of the core was 10mm, most errors were 15% and the maximum errors were 23%. These results will be used as a reference for the design of long-distance HTS power cables.

CFD study of an airfoil for small wind turbine applications

  • Wata, Joji;Zullah, Mohammed Asid;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.64.1-64.1
    • /
    • 2011
  • Small horizontal axis wind turbines (HAWTs) can be used to produce power in areas where the wind conditions are not favorable or optimal for large HAWTs. A newly designed airfoil for use in small HAWTs was analyzed in CFD to predict the aerodynamic performance at various Reynolds numbers over a various angles of attack. The coefficient of lift and drag, CL and CD, and the pressure distribution over the airfoil was obtained. It was found that the airfoil could achieve very good aerodynamic characteristics. The results of the numerical analysis will be compared against experimental data for validation purposes.

  • PDF

Prediction of broadband noise signal from a large wind turbine (대형 풍력발전기 블레이드의 광대역 소음 신호 예측 및 분석)

  • Lee, Seunghoon;Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • This study predicted broadband noise from a generic 2.5MW wind turbine blade in the time domain. The rotor blade was modeled as thin rectangular flat plates. A simplified analytic model proposed by Amiet was used to model the unsteady surface pressure distribution. The acoustic pressure was calculated by using the loading term of Formulation 1A proposed by Farassat. The validation was also performed by comparing with an experiment of Brooks, Pope, and Marcolini. By using these numerical methods, the broadband noise signal of the wind turbine was successfully predicted in this study.

  • PDF

Aerodynamic Characteristics of Neighboring Building Exposed to Twisted Wind

  • Lei Zhou;KamTim Tse;Gang Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.241-263
    • /
    • 2022
  • The conventional wind and twisted-wind effect on aerodynamic properties of neighboring buildings arranged in side-by-side and tandem systems at 2B and 5B spacings are systematically investigated by large eddy simulation. Different physical interactions between different wind profiles and neighboring buildings will be deeply understood. The neighboring-building system under two different types of wind profiles, i.e., conventional wind profile (CWP), twisted wind profiles (TWP) with the maximum twisted angle of 30°, is used to evaluate the variation of physical mechanism between wind and buildings. Aerodynamic characteristics including mean and RMS pressure coefficient, and velocity field were systematically analyzed and compared between different scenario. It was found that the distribution of mean pressure, root-mean-square x velocity and the streamline of wind flow for TWP greatly deviated from CWP, and the effect of TWP on the downstream building, was drastically different from that of CWP, such as the size of vortexes after the lower stream building being bigger when exposed to TWP, and the mean pressure distribution on the building surfaces are also different. Moreover, evidence of buildings arranged in side-by-side and tandem configurations having interchangeable properties under TWP was also discovered, that two buildings being arranged side-by-side exposed to TWP could be identified as being arranged in tandem with a different wind twist angle, or vice versa.

Analysis of the Reason for Occurrence of Large-Height Swell-like Waves in the East Coast of Korea (우리나라 동해안 너울성 고파의 발생원인 분석)

  • Oh, Sang-Ho;Jeong, Weon-Mu;Lee, Dong-Young;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.101-111
    • /
    • 2010
  • Characteristics of large-height swell-like waves that repeatedly occurred on the Korean East Coast in winter season were analyzed by using the wave observation data and the meteorological data. Based on the results of the data analysis, it was demonstrated that the swell-like waves have been generated due to the long-lasting strong northeasters in the East Sea, which were formed as a result of the low pressure trough in the vicinity of the extratropical low pressure system that advanced to East Sea from the China inland with decreasing its central pressure. Among the recently occurred events of the swell-like waves, the characteristics of the two events in October 2005 and 2006 were predominantly wind waves. Meanwhile, the one in February 2008 seems to be occurred by the initial wave growth due to wind waves followed by the secondly increase of the wave height due to longer-period swell.

A Numerical Study on Analysis of Low Frequency Aero-acoustic Noise for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 저주파 공력소음 해석에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1170-1179
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI for the whole operating conditions of various wind speeds using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Because there is no experimental data about wind turbine noise, we first of all compared aerodynamic performance such as shaft torque and power with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. As the wind speed increases, the overall sound pressure level and the sound pressure level by the quadrupole and dipole source show a increasing tendency. Also, sound pressure level is proportional to $r^{-2}$ in the near field and $r^{-1}$ in the far field according to the increase of distance from the center of hub of wind turbine. According to 2 times increase of distance, sound pressure level is reduced by about 6dB.

Numerical Simulation of Wind Pressures on a High-rise Building by Auto-mesh System

  • Tang, Yuanzhe;Cao, Shuyang
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.255-264
    • /
    • 2019
  • This paper describes large eddy simulation of wind pressures on a square cylinder in a uniform flow and a high-rise building immersed in an atmospheric turbulent boundary layer. For the atmospheric boundary layer case, the inflow turbulence is generated by a numerical wind tunnel. In the numerical simulation, particular attention is devoted to the performance of an auto hexahedral non-structural mesh. Both simulations are performed for three grid systems: an auto hexahedral non-structured grid, a structured Cartesian grid and a non-structured triangular prism grid, and for three grid numbers. The present study shows that the auto hexahedral unstructured mesh achieves the best simulation results for wind pressures on the square cylinder and the high-rise building. When the grid number is sufficiently large, the differences among the results obtained from the three investigated grid systems are not significant. However, the advantage of the auto hexahedral unstructured mesh becomes clear when the grid number decreases, because it enables a balanced distribution of orthogonal grids. The results described in this paper demonstrate that the auto hexahedral non-structured mesh has good potential applicability to simulation of urban flows.