• Title/Summary/Keyword: large system approximation

Search Result 104, Processing Time 0.022 seconds

On Development of Lower Order Aggregated Model for the Linear Large-Scale Model

  • Yoo, Beyong-Woo
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.125-142
    • /
    • 1998
  • The aggregation on linear large-scale dynamic systems is examined in this paper and a "two-step" approach is proposed. In this procedure, the aggregated system consists of two subsystems. The first subsystem represents aggregation through the retainment of dominant eigenvalues of the original system, leading to a first approximation of the desired output of the original system. The purpose of augmenting it with a second subsystem is to provide an estimation of the error on the first approximation, thus permitting a second correction to the output approximation and resulting in an output approximation of greater accuracy. Optimization techniques are discussed for the determination of unknown parameters in the aggregated system. These techniques use minimization principles of certain suitable performance indices and are developed for both single input-single output and multiple input-multiple output system. Numerical examples illustrating these procedures are given and the results are compared with those obtained using existing methods. Finally, a pharmacokinetics problem is studied from the aggregation point of view.

  • PDF

3D Beamforming Techniques in Multi-Cell MISO Downlink Active Antenna Systems for Large Data Transmission (대용량 데이터 전송을 위한 다중 셀 MISO 하향 능동 안테나 시스템에서 3D 빔포밍 기법)

  • Kim, Taehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2298-2304
    • /
    • 2015
  • In this paper, we provide a new approach which optimizes the vertical tilting angle of the base station for multi-cell multiple-input single-output (MISO) downlink active antenna systems (AAS). Instead of the conventional optimal algorithm which requires an exhaustive search, we propose simple and near optimal algorithms. First, we represent a large system approximation based vertical beamforming algorithm which is applied to the average sum rate by using the random matrix theory. Next, we suggest a signal-to-leakage-and-noise ratio (SLNR) based vertical beamforming algorithm which simplifies the optimization problem considerably. In the simulation results, we demonstrate that the performance of the proposed algorithms is near close to the exhaustive search algorithm with substantially reduced complexity.

A diffusion approximation for time-dependent queue size distribution for M/G/m/N system

  • Park, Bong-Dae;Shin, Yang-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.211-236
    • /
    • 1995
  • The purpose of this paper is to provide a transient diffusion approximation of queue size distribution for M/G/m/N system. The M/G/m/N system can be expressed as follows. The interarrival times of customers are exponential and the service times of customers have general distribution. The system can hold at most a total of N customers (including the customers in service) and any further arriving customers will be refused entry to the system and will depart immediately without service. The queueing system with finite capacity is more practical model than queueing system with infinite capacity. For example, in the design of a computer system one of the important problems is how much capacity is required for a buffer memory. It its capacity is too little, then overflow of customers (jobs) occurs frequently in heavy traffic and the performance of system deteriorates rapidly. On the other hand, if its capacity is too large, then most buffer memories remain unused.

  • PDF

A Meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds

  • Wu, C.T.;Koishi, M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.129-151
    • /
    • 2009
  • This paper presents a meshfree procedure using a convex generalized meshfree (GMF) approximation for the large deformation analysis of particle-reinforced rubber compounds on microscopic level. The convex GMF approximation possesses the weak-Kronecker-delta property that guarantees the continuity of displacement across the material interface in the rubber compounds. The convex approximation also ensures the positive mass in the discrete system and is less sensitive to the meshfree nodal support size and integration order effects. In this study, the convex approximation is generated in the GMF method by choosing the positive and monotonic increasing basis function. In order to impose the periodic boundary condition in the unit cell method for the microscopic analysis, a singular kernel is introduced on the periodic boundary nodes in the construction of GMF approximation. The periodic boundary condition is solved by the transformation method in both explicit and implicit analyses. To simulate the interface de-bonding phenomena in the rubber compound, the cohesive interface element method is employed in corporation with meshfree method in this study. Several numerical examples are presented to demonstrate the effectiveness of the proposed numerical procedure in the large deformation analysis.

Decentralized Adaptive Control for Nonlinear Systems with Time-Delayed Interconnections: Intelligent Approach (시간 지연 상호 연계를 가진 비선형 시스템의 분산 적응 제어: 지능적인 접근법)

  • Yoo, Sung-Jin;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2009
  • A decentralized adaptive control method is proposed for large-scale systems with unknown time-delayed nonlinear interconnections unmatched in control inputs. It is assumed that the time-delayed interaction terms are bounded by unknown nonlinear bounding functions. The nonlinear bounding functions and uncertain nonlinear functions of large-scale systems are compensated by the function approximation technique using neural networks. The dynamic surface control method is extended to design the proposed memoryless local controller for each subsystem of uncertain nonlinear large-scale time delay systems. Therefore, although the interconnected systems consist of a large number of subsystems, the proposed controller can be designed simply. We prove that all the signals in the total closed-loop system are semiglobally uniformly bounded and the control errors converge to an adjustable neighborhood of the origin. Finally, an example is given to demonstrate the effectiveness and applicability of the proposed scheme.

A study on the performance evaluation of high speed interprocessor communication netowrk in a large capacity digital switching system (대용량 전자교환기의 고속 내부통신망 성능 평가에 관한 연구)

  • 최진규;박형준;정윤쾌;권보섭;이충근
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.55-64
    • /
    • 1996
  • This paper presents performance evaluation of a new high speed inter-processor communication(HIPC) network for large capacity and high performance digitral switching system. The HIPC structure implements the fast reservation and concurrent arbitration technique (modified round-robin arbitration). The performance evaluation of HIPC was performed by not only computer simulation but also numerical approximation method which was derived for a single server multi-queue system with nonexhaustive cyclic service. The approximation results are almost same with that of computer simulation. The TDX-10 basic callscenario was applied to the HIPC netowrk and analyzed. these results were compared with TDX-10 IPC and shows that the difference of th emean waiting time in the TX buffer of NTP node increases sharply according to the increase of the message arrival rate.

  • PDF

Structural Optimization by Global-Local Approximations Structural Reanalysis based on Substructuring (부구조화 기반 전역-부분 근사화 구조재해석에 의한 구조최적화)

  • 김태봉;서상구;김창운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.120-131
    • /
    • 1997
  • This paper presents an approximate reanalysis methods of structures based on substructuring for an effective optimization of large-scale structural systems. In most optimal design procedures the analysis of the structure must be repeated many times. In particular, one of the main obstacles in the optimization of structural systems are involved high computational cost and expended long time in the optimization of large-scale structures. The purpose of this paper is to evaluate efficiently the structural behavior of new designs using information from previous ones, without solving basic equations for successive modification in the optimal design. The proposed reanalysis procedure is combined Taylor series expansions which is a local approximation and reduced basis method which is a global approximation based on substructuring. This technique is to choose each of the terms of Taylor series expansions as the basis vector of reduced basis method in substructuring system which is one of the most effective analysis of large -scale structures. Several numerical examples illustrate the effectiveness of the solution process.

  • PDF

On Parallel Implementation of Lagrangean Approximation Procedure (Lagrangean 근사과정의 병렬계산)

  • 이호창
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.3
    • /
    • pp.13-34
    • /
    • 1993
  • By operating on many part of a software system concurrently, the parallel processing computers may provide several orders of magnitude more computing power than traditional serial computers. If the Lagrangean approximation procedure is applied to a large scale manufacturing problem which is decomposable into many subproblems, the procedure is a perfect candidate for parallel processing. By distributing Lagrangean subproblems for given multiplier to multiple processors, concurrently running processors and modifying Lagrangean multipliers at the end of each iteration of a subgradient method,a parallel processing of a Lagrangean approximation procedure may provide a significant speedup. This purpose of this research is to investigate the potential of the parallelized Lagrangean approximation procedure (PLAP) for certain combinational optimization problems in manufacturing systems. The framework of a Plap is proposed for some combinatorial manufacturing problems which are decomposable into well-structured subproblems. The synchronous PLAP for the multistage dynamic lot-sizing problem is implemented on a parallel computer Alliant FX/4 and its computational experience is reported as a promising application of vector-concurrent computing.

  • PDF

An approximation of the M/M/s system where customers demand random number of servers (고객(顧客)이 임의수(任意數)의 Server 를 원하는 M/M/s system 의 개산법(槪算法))

  • Kim, Seong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.7 no.1
    • /
    • pp.5-11
    • /
    • 1981
  • In the case of numerical implementation, the exact solution method for the M/M/s system where customers demand multiple server use [2] reveals limitations, if a system has large number of servers or types of customers. This is due to the huge matrices involved in the course of the calculations. This paper offers an approximation scheme for such cases. Capitalizing the characteristics of the service rate curve of the system, this method approximates the service rate as a piecewise linear function. With the service rates obtained from the linear function for each number of customers n (n=0. 1. 2,$\cdots$), ${\mu}(n)$, steady-state probabilities and measures of performance are found treating this system as an ordinary M/M/s system. This scheme performs well when the traffic intensity of a system is below about 0.8. Some numerical examples are presented.

  • PDF

Progressive Quadratic Approximation Method for Effective Constructing the Second-Order Response Surface Models in the Large Scaled System Design (대형 설계 시스템의 효율적 반응표면 근사화를 위한 점진적 이차 근사화 기법)

  • Hong, Gyeong-Jin;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3040-3052
    • /
    • 2000
  • For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.