• Title/Summary/Keyword: large subunit

Search Result 332, Processing Time 0.03 seconds

The Genus Acervus from Southwestern China and Northern Thailand

  • Zeng, Ming;Zhao, Qi;Gentekaki, Eleni;Hyde, Kevin D.;Zhao, Yongchang
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.464-475
    • /
    • 2020
  • Acervus (Pyronemataceae, Pezizales) is a saprobic genus in Pezizomycetes, characterized by colored apothecia, subcylindrical to cylindrical asci and guttulate ascospores. We collected four Acervus samples from China and Thailand. Descriptions and illustrations are introduced for all fresh samples. One new record of A. globulosus from Thailand, one new species, A. rufus, two known species, A. epispartius and A. stipitatus from China are reported. Phylogenetic analysis based on five genes, the large subunit rRNA (LSU), the translation elongation factor-1 alpha (tef1-α), the second largest subunit of RNA polymerase II (rpb2), the largest subunit of RNA polymerase II (rpb1), and the small subunit rRNA (SSU), revealed the distinct position of the new species. The new species is set apart by its red apothecia. A key to Acervus species is also given.

Identification of Medicinal Mushroom Species Based on Nuclear Large Subunit rDNA Sequences

  • Lee Ji Seon;Lim Mi Ok;Cho Kyoung Yeh;Cho Jung Hee;Chang Seung Yeup;Nam Doo Hyun
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • The purpose of this study was to develop molecular identification method for medical mushrooms and their preparations based on the nucleotide sequences of nuclear large subunit (LSD) rDNA. Four specimens were collected of each of the three representative medicinal mushrooms used in Korea: Ganoderma Incidum, Coriolus versicolor, and Fomes fomentarius. Fungal material used in these experiments included two different mycelial cultures and two different fruiting bodies from wild or cultivated mushrooms. The genomic DNA of mushrooms were extracted and 3 nuclear LSU rDNA fragments were amplified: set 1 for the 1.1-kb DNA fragment in the upstream region, set 2 for the 1.2-kb fragment in the middle, and set 3 for the 1.3-kb fragment downstream. The amplified gene products of nuclear large subunit rDNA from 3 different mushrooms were cloned into E. coli vector and subjected to nucleotide sequence determination. The sequence thus determined revealed that the gene sequences of the same medicinal mushroom species were more than $99.48\%$ homologous, and the consensus sequences of 3 different medicinal mushrooms were more than $97.80\%$ homologous. Restriction analysis revealed no useful restriction sites for 6-bp recognition enzymes for distinguishing the 3 sequences from one another, but some distinctive restriction patterns were recognized by the 4-bp recognition enzymes AccII and HhaI. This analysis was also confirmed by PCR-RFLP experiments on medicinal mushrooms.

Studies on the Purification and Biochemical Properties of Vitellin in the Antheraea yamamai Guerin-Meneville II. Biochemical Properties of Vitellin (천잠(Antheraea yamamai) Vitellin의 분리와 생화학적 특성에 관한 연구 II. Vitellin의 생화학적 특성)

  • 김철명;문재유
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.2
    • /
    • pp.82-90
    • /
    • 1989
  • Antheraea yamamai vitellin was purified from matured eggs by polyacrylamide gel electrophoresis for characterization of its biochemical properties : molecular weight, sugar and lipid composition, amino acid composition and electron microscopic morphology, etc. 1. A yamamai vitellin was composed of two subunits, large and small, showing different mobility in SDS-polyacrylamide gel electrophoresis. 2. The molecular weight of the vitellin was estimated to be approximately 450,000 dalton and the large and small subunits were 174,000 dalton and 44,000 dalton, respectively. 3. The vitellin seemed to be a glycolipoprotein since it showed a positive reaction to coomassie brilliant blue, sudan black B and PAS staining. Both subunits were similiar in this aspect. 4. Lipid of the witellin reveraled several different types including saturated lipids. 5. When the vitellin was incubated at 7$0^{\circ}C$ for 60 minites its apoprotein still cross-reacted to the specific antiserum to the native vitellin. Its sugar components were also detected by PAS staining, but its lipid portion was not detected by sudan black B staining. 6. Its amino acid composition was similar to that of other insects, but its glycine content was peculiarly very high. 7. The vitellin molecule was spherical in shape with a diameter of 14$\pm$0.8nm by negatively.

  • PDF

Molecular Cloning and Characterization of a Large Subunit of Salmonella typhimurium Glutamate Synthase (GOGAT) Gene in Escherichia coli

  • Chung Tae-Wook;Lee Dong-Ick;Kim Dong-Soo;Jin Un-Ho;Park Chun;Kim Jong-Guk;Kim Min-Gon;Ha Sang-Do;Kim Keun-Sung;Lee Kyu-Ho;Kim Kwang-Yup;Chung Duck-Hwa;Kim Cheorl-Ho
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • Two pathways of ammonium assimilation and glutamate biosynthesis have been identified in microorganisms. One pathway involves the NADP-linked glutamate dehydrogenase, which catalyzes the amination of 2-oxoglutarate to form glutamate. An alternative pathway involves the combined activities of glutamine synthetase, which aminates glutamate to form glutamine, and glutamate synthase, which transfers the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate. We have cloned the large subunit of the glutamate synthase (GOGAT) from Salmonella typhimurium by screening the expression of GOGAT and complementing the gene in E. coli GOGAT large subunit-deficient mutants. Three positive clones (named pUC19C12, pUC19C13 and pUC19C15) contained identical Sau3AI fragments, as determined by restriction mapping and Southern hybridization, and expressed GOGAT efficiently and constitutively using its own promoter in the heterologous host. The coding region expressed in Escherichia coli was about 170 kDa on SDS-PAGE. This gene spans 4,732 bases, contains an open reading frame of 4,458 nucleotides, and encodes a mature protein of 1,486 amino acid residues (Mr =166,208). The EMN-binding domain of GOGAT contains 12 glycine residues, and the 3Fe-4S cluster has 3 cysteine residues. The comparison of the translated amino acid sequence of the Salmonella GOGAT with sequences from other bacteria such as Escherichia coli, Salmonella enterica, Shigella flexneri, Yersinia pestis, Vibrio vulnificus and Pseudomonas aeruginosa shows sequence identity between 87 and 95%.

First Report of Summer Patch Caused by Magnaporthiopsis poae on Cool Season Grass (Magnaporthiopsis poae에 의한 한지형 잔디의 여름잎마름병 보고)

  • Han, Ju Ho;Ahn, Chang Hyun;Lee, Seung-Yeol;Back, Chang-Gi;Kang, In-Kyu;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.196-200
    • /
    • 2016
  • Symptoms of summer patch were observed on Kentucky bluegrass (Poa pratensis L.) cv. "Midnight II" from mid-June in 2015 in Seoul, Korea. The symptoms appeared as leaf blight, root rot, and frog-eye patch, which are typical of summer patch. To identify the causal agent of these symptoms, a pathogen was isolated from diseased leaves and roots, and the cultural, morphological, and phylogenetic characteristics were analyzed. The isolate reached 50-60 mm on potato dextrose agar (PDA) after 10 days as a white-grey mycelium with septa, and became olive-green or brown from the center. Phialide-like structures were observed at the ends of hyphae, and conidia were rarely observed. A phylogenetic analysis was conducted based on large subunit (LSU) and RNA polymerase II large subunit (RPB1) sequences. According to this analysis, the isolated pathogen was confirmed to be Magnaporthiopsis poae. In a pathogenicity test, summer patch symptoms were observed at 20 days after inoculation using the same grass cultivar. This is the first report of summer patch disease caused by M. poae on cool season grass in Korea.

Starch Phosphorylase and its Inhibitor from Sweet Potato Root

  • Chang, Tsung-Chain;Su, Jong-Ching
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.2
    • /
    • pp.134-138
    • /
    • 1986
  • Based on a tracer study, starch phosphorylase was implicated as an agent in the starch synthesis in sweet potato roots. The enzyme was purified from the tissue as a cluster of isozymes with an average mw of 205K (fresh roots) or 159K (roots stored for 3 mon.). On SDS polyacrylamide gel electrophoresis, one large subunit of 98K mw and several small ones of 47${\sim}57K mw were observed. From the mw data and the results of peptide mapping and immunoelectrophoretic blotting using mono- and polyclonal antibodies, it was deduced that a large part of the large subunit was cleaved at the middle part of the peptide chain to give rise to the small subunits, and on storage, the enzyme molecules were further modified by proteolysis. During the course of phosphorylase purification, a proteinaceous inhibitor of the enzyme was isolated. It had a mw of 250K and was composed of 5 identical subunits of 51K mw. In the direction of starch synthesis, the inhibitor showed a noncompetitive kinetics with a Ki of $1.3{\times}10^{-6}\;M$. By immunohistochemical methods, both the enzyme and the inhibitor were located on the cell wall and amyloplast. Crossreacting materials of the inhibitor were present in spinach leaf, potato tuber and rice grain. These findings indicate the wide occurrence of the inhibitor and also imply its possible participation in regulating starch phosphorylase activity in vivo.

  • PDF

Expression, Purification and Functional and structural relationship of pyruvate dehydrogenase phosphatase

  • Kim, Young-Mi;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.236-236
    • /
    • 2002
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase componant of the pyruvate dehydrogenase complex (PDC). PDP consists of a Mg$\^$+2/ -dependent and Ca$\^$+2)-stimulated catalytic subunit (PDPc) of Mr 52,600 and a FAD-containing regulatory subunit (PDPr) of Mr 95.600. Catalytic subunit of pyruvate dehydrogenase phosphatase (PDPc) has been suggested to have three major functional domains such as dihydrolipoamide acetyltransferase(E$_2$)-binding domain, regulatory subunit of PDP(PDPr)-binding domain, and calcium-binding domain. In order to identify functional domains, recombinant catalytic subunit of pyruvate dehydrogenase phosphatase (rPDPc) was expressed in E. coli JM101 and purified to near homogeneity using the unique property of PDPc: PDPm binds to the inner lipoyl domain (L$_2$) of E$_2$ of pyruvate dehydrogenase complex (PDC) in the presence of Ca$\^$+2/, not under EGTA. PDPc was limited-proteolysed by trypsin, chymotrypsin, Arg-C, and elastase at pH7.0 and 30$^{\circ}C$ and N-terminal analysis of the fragment was done. Chymotrypsin, trypsin, and elastase made two major framents: N-terminal large fragment, approx. 50kD and C-terminal small fragment, approx. 0 kDa. Arg-C made three major fragments: N-terminal fragment, approx. 35 kD, and central fragment, approx. 15 kD, and C-terminal fragment, approx. 10 kD. This study strongly suggest that PDPc consists of three major functional domains. However, further study should be necessary to identify the functional role.

  • PDF

Molecular Cloning of ATPase $\alpha$-Subunit Gene from Mitochondria of Korean Ginseng (Panu ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A. Meyer) ATPase $\alpha$-subunit 유전자의 Cloning)

  • Park, Ui-Sun;Choi, Kwan-Sam;Kim, Kab-Sig;Kim, Nam-Won;Choi, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.56-61
    • /
    • 1995
  • Molecular cloning and restriction mapping on ATPase $\alpha$-subunit gene (atpA) were carried out to obtain genomic information concerned with the gene structure and organization in Korean ginseng mitochondria. Two different clones containing the homologous sequence of atpA gene were selected from SalI and PstI libraries of mitochondrial DNA (mtDNA) of Korean ginseng. The sizes of mtDNA fragments inserted in SalI and PstI clones were 3.4 kb and 13 kb, respectively. Southern blot analysis with [$^{32}P$] labelled Oenothera atPA gene probe showed that atpA gene sequence was located in 2.0 kb XkaI fragment in PstI clone and in 1.7 kb XbaI fragment in SalI clone. A partial sequening ascertained that the SalI clone included about 1.2 kb fragment from SalI restriction site to C-terminal sequence of this gene but about 0.3 kb N-terminal sequence of open reading frame was abscent. The PstI fragment was enough large to cover the full sequence of atpA gene. The same restriction pattern of the overlapped region suggests that both clones include the same fragment of atiA locus. Data of Southern blot analysis and partial nucleotide sequencing suggested that mtDNA of Korean ginseng has a single copy of atpA gene. Key words ATPase a-subunit, mitochondrial DNA, Panax ginseng.

  • PDF

Cloning and Characerization of the Ribosomal RNA Gene from Gonyaulax polyedra

  • Lee, Hee-Gyun;Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.515-523
    • /
    • 2001
  • The dinoflagellates have some primitive nuclear features and are evolutionarily intermediate between prokaryotes and eukaryotes. The small subunit ribosomal RAN gene, the 5.8S ribosomal RNA gene, and the internal transcribed spacer (ITS) of Gonyaulax polyedra were cloned, and their sequences were analyzed to better understand their evolutionary position. The small subunit ribosomal RNA gene was 1,794 nt long, the large subunit ribosomal RNA gene was approximately 3,500 nt long, and the 5.8S ribosomal RNA gene was 159 nt long. The first internal transcribed spacer (ITS1) was 191 nt long, and the second internal transcribed spacer (ITS2) was 185 nt long. The intergenic spacer of the ribosomal RNA gene (IGS) was about 2,200 nt long, indicating that 5,800 nt of transcribed sequences were separated by roughly 2,200 nt of intergenic spacer. The ribosomal RNA genes were repeated many times and arranged in a head-to-tail, tandemly repeated manner. The repeating unit of ribosomal RNA gene of G. polyedra was proposed to be 8,000 nt long. Based on the lengths of ribosomal RNA, sequence alignments with representative organisms, and phylogenetic analysis on ribosomal RNA, G. polyedra appears to be one of the alveolates branched from the eukaryotic crown and, among dinoflagellates, it seems to not have emerged early.

  • PDF